Yong Li, Shuai Wang, Z. Chu, Jie Tang, Yang Xu, Zhujun Ai, Hongtao Wang
{"title":"A new suspension structure of micro/nano probe","authors":"Yong Li, Shuai Wang, Z. Chu, Jie Tang, Yang Xu, Zhujun Ai, Hongtao Wang","doi":"10.1117/12.2176017","DOIUrl":null,"url":null,"abstract":"The measuring force of a micro/nano probe is an important factor affecting the probe measurement accuracy. The strength of the force largely depends on the nature of the suspension structure. How to improve the flexibility of the suspension structure is a difficult issue. To tackle the problem, this paper will put forwards an integrated suspension structure, which composed of three evenly spaced elastic hinges. Each elastic hinge has two beams, one of which is used to as the support. In measurement, the maximum displacement is occurred at the intersection of the two beams. In this paper, the flexibility of the suspension structure and probe measuring capability related to the elastic hinge's size and material are investigated based on theoretical modeling and simulation. The research result is significant to reduce the probe measuring force and improve its sensitivity.","PeriodicalId":380636,"journal":{"name":"Precision Engineering Measurements and Instrumentation","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering Measurements and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2176017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The measuring force of a micro/nano probe is an important factor affecting the probe measurement accuracy. The strength of the force largely depends on the nature of the suspension structure. How to improve the flexibility of the suspension structure is a difficult issue. To tackle the problem, this paper will put forwards an integrated suspension structure, which composed of three evenly spaced elastic hinges. Each elastic hinge has two beams, one of which is used to as the support. In measurement, the maximum displacement is occurred at the intersection of the two beams. In this paper, the flexibility of the suspension structure and probe measuring capability related to the elastic hinge's size and material are investigated based on theoretical modeling and simulation. The research result is significant to reduce the probe measuring force and improve its sensitivity.