A recommendation algorithm using positive and negative latent models

A. Takasu, Saranya Maneeroj
{"title":"A recommendation algorithm using positive and negative latent models","authors":"A. Takasu, Saranya Maneeroj","doi":"10.1109/CIDM.2011.5949455","DOIUrl":null,"url":null,"abstract":"This paper proposes an algorithm for recommender systems that uses both positive and negative latent user models. In recommending items to a user, recommender systems usually exploit item content information as well as the preferences of similar users. Various types of content information can be attached to items and these are useful for judging user preferences. For example, in movie recommendations, a movie record may include the director, the actors, and reviews. These types of information help systems calculate sophisticated user preferences. We first propose a probabilistic model that maps multi-attributed records into a low-dimensional feature space. The proposed model extends latent Dirichlet allocation to the handling of multi-attributed data. We derive an algorithm for estimating the model's parameters using the Gibbs sampling technique. Next, we propose a probabilistic model to calculate user preferences for items in the feature space. Finally, we develop a recommendation algorithm based on the probabilistic model that works efficiently for large quantities of items and user ratings. We use a publicly available movie corpus to evaluate the proposed algorithm empirically, in terms of both its recommendation accuracy and its processing efficiency.","PeriodicalId":211565,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2011.5949455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes an algorithm for recommender systems that uses both positive and negative latent user models. In recommending items to a user, recommender systems usually exploit item content information as well as the preferences of similar users. Various types of content information can be attached to items and these are useful for judging user preferences. For example, in movie recommendations, a movie record may include the director, the actors, and reviews. These types of information help systems calculate sophisticated user preferences. We first propose a probabilistic model that maps multi-attributed records into a low-dimensional feature space. The proposed model extends latent Dirichlet allocation to the handling of multi-attributed data. We derive an algorithm for estimating the model's parameters using the Gibbs sampling technique. Next, we propose a probabilistic model to calculate user preferences for items in the feature space. Finally, we develop a recommendation algorithm based on the probabilistic model that works efficiently for large quantities of items and user ratings. We use a publicly available movie corpus to evaluate the proposed algorithm empirically, in terms of both its recommendation accuracy and its processing efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于正潜和负潜模型的推荐算法
本文提出了一种同时使用正面和负面潜在用户模型的推荐系统算法。在向用户推荐商品时,推荐系统通常利用商品内容信息以及类似用户的偏好。可以将各种类型的内容信息附加到项目上,这些信息对于判断用户偏好非常有用。例如,在电影推荐中,电影记录可能包括导演、演员和评论。这些类型的信息帮助系统计算复杂的用户偏好。我们首先提出了一个概率模型,将多属性记录映射到低维特征空间。该模型将潜在狄利克雷分配扩展到多属性数据的处理。我们推导了一种利用吉布斯抽样技术估计模型参数的算法。接下来,我们提出了一个概率模型来计算用户对特征空间中物品的偏好。最后,我们开发了一种基于概率模型的推荐算法,该算法可以有效地处理大量的项目和用户评分。我们使用一个公开的电影语料库,从推荐精度和处理效率两方面对所提出的算法进行了实证评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A multi-Biclustering Combinatorial Based algorithm Active classifier training with the 3DS strategy Link Pattern Prediction with tensor decomposition in multi-relational networks Using gaming strategies for attacker and defender in recommender systems Generating materialized views using ant based approaches and information retrieval technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1