Automatic Inferior Vena Cava segmentation in contrast-enhanced CT volumes

T. Lefèvre, B. Mory, R. Ardon, Javier Sanchez-Castro, A. Yezzi
{"title":"Automatic Inferior Vena Cava segmentation in contrast-enhanced CT volumes","authors":"T. Lefèvre, B. Mory, R. Ardon, Javier Sanchez-Castro, A. Yezzi","doi":"10.1109/ISBI.2010.5490321","DOIUrl":null,"url":null,"abstract":"This paper presents a novel robust automatic method for the segmentation of the Inferior Vena Cava (IVC) in the proximity of the liver. In clinical diagnosis and surgery planning, IVC segmentation is essential since it strongly impacts both liver volumetry accuracy and vascularity analysis. Given the anatomical variability, the lack of clear boundaries and complexity of the surrounding structures along the IVC, its segmentation remains a difficult and open problem. To cope with such challenging conditions, we developed an implicit representation of a generalized cylinder and optimized a local region-based criterion under dedicated anatomical constraints. Our method was tested on a dataset of 20 contrast-enhanced CT scans, achieving 80% success rate in fully automatic mode. The remaining cases needed minimal user input (one point) to reach 95% success under radiology expert criteria.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a novel robust automatic method for the segmentation of the Inferior Vena Cava (IVC) in the proximity of the liver. In clinical diagnosis and surgery planning, IVC segmentation is essential since it strongly impacts both liver volumetry accuracy and vascularity analysis. Given the anatomical variability, the lack of clear boundaries and complexity of the surrounding structures along the IVC, its segmentation remains a difficult and open problem. To cope with such challenging conditions, we developed an implicit representation of a generalized cylinder and optimized a local region-based criterion under dedicated anatomical constraints. Our method was tested on a dataset of 20 contrast-enhanced CT scans, achieving 80% success rate in fully automatic mode. The remaining cases needed minimal user input (one point) to reach 95% success under radiology expert criteria.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CT增强扫描自动下腔静脉分割
本文提出了一种新的鲁棒自动分割下腔静脉(IVC)的方法。在临床诊断和手术计划中,下腔静脉分割是必不可少的,因为它强烈影响肝脏容量测量的准确性和血管分析。由于下颌骨的解剖变异性、缺乏清晰的边界和周围结构的复杂性,下颌骨的分割仍然是一个困难和开放的问题。为了应对这种具有挑战性的条件,我们开发了广义圆柱体的隐式表示,并在专用解剖约束下优化了基于局部区域的标准。我们的方法在20个对比增强CT扫描数据集上进行了测试,在全自动模式下成功率达到80%。其余病例需要最少的用户输入(1分),在放射学专家标准下达到95%的成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced detection of cell paths in spatiotemporal plots for noninvasive microscopy of the human retina Automatic segmentation of pulmonary vasculature in thoracic CT scans with local thresholding and airway wall removal Fast and closed-form ensemble-average-propagator approximation from the 4th-order diffusion tensor Probabilistic branching node detection using AdaBoost and hybrid local features Multiphase level set for automated delineation of membrane-bound macromolecules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1