Silicon implementation of an artificial dendritic tree

J. G. Elias, H.-H. Chu, S. M. Meshreki
{"title":"Silicon implementation of an artificial dendritic tree","authors":"J. G. Elias, H.-H. Chu, S. M. Meshreki","doi":"10.1109/IJCNN.1992.287143","DOIUrl":null,"url":null,"abstract":"The silicon implementation of an artificial passive dendritic tree which can be used to process and classify dynamic signals is described. The electrical circuit architecture is modeled after complex neurons in the vertebrate brain which have spatially extensive dendritic tree structures that support large numbers of synapses. The circuit is primarily analog and, as in the biological model system, is virtually immune to process variations and other factors which often plague more conventional circuits. The nonlinear circuit is sensitive to both temporal and spatial signal characteristics but does not make use of the conventional neural network concept of weights, and as such does not use multipliers, adders, or other complex computational devices. As in biological neuronal circuits, a high degree of local connectivity is required. However, unlike biology, multiplexing of connections is done to reduce the number of conductors to a reasonable level for standard packages.<<ETX>>","PeriodicalId":286849,"journal":{"name":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1992] IJCNN International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1992.287143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The silicon implementation of an artificial passive dendritic tree which can be used to process and classify dynamic signals is described. The electrical circuit architecture is modeled after complex neurons in the vertebrate brain which have spatially extensive dendritic tree structures that support large numbers of synapses. The circuit is primarily analog and, as in the biological model system, is virtually immune to process variations and other factors which often plague more conventional circuits. The nonlinear circuit is sensitive to both temporal and spatial signal characteristics but does not make use of the conventional neural network concept of weights, and as such does not use multipliers, adders, or other complex computational devices. As in biological neuronal circuits, a high degree of local connectivity is required. However, unlike biology, multiplexing of connections is done to reduce the number of conductors to a reasonable level for standard packages.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用硅实现的一棵人工树突树
描述了一种用于动态信号处理和分类的人工无源树突状树的硅实现。电路结构是模仿脊椎动物大脑中的复杂神经元,这些神经元具有空间广泛的树突树结构,支持大量突触。该电路主要是模拟的,并且与生物模型系统一样,几乎不受过程变化和其他经常困扰传统电路的因素的影响。非线性电路对时间和空间信号特征都很敏感,但不使用传统的神经网络权重概念,因此不使用乘法器、加法器或其他复杂的计算设备。在生物神经回路中,需要高度的局部连接。然而,与生物学不同的是,连接的多路复用是为了将导体的数量减少到标准封装的合理水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear system identification using diagonal recurrent neural networks Why error measures are sub-optimal for training neural network pattern classifiers Fuzzy clustering using fuzzy competitive learning networks Design and development of a real-time neural processor using the Intel 80170NX ETANN Precision analysis of stochastic pulse encoding algorithms for neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1