Wave propagation based analytical delay and cross talk noise model for distributed on-chip RLCG interconnects

A. Choudhary, V. Maheshwari, Abhishek Singh, R. Kar
{"title":"Wave propagation based analytical delay and cross talk noise model for distributed on-chip RLCG interconnects","authors":"A. Choudhary, V. Maheshwari, Abhishek Singh, R. Kar","doi":"10.1109/SMELEC.2010.5549381","DOIUrl":null,"url":null,"abstract":"This paper proposes a wave propagation based approach to derive crosstalk and delay between two coupled RLCG interconnects in the transform domain. The increase of clock frequency into the GHz range, coupled with longer length interconnects of small cross-section and low dielectric strength, can result in cross coupling effects between on-chip interconnects. The traditional analysis of crosstalk in a transmission line begins with a lossless LC representation, yielding a wave equation governing the system response. In order to determine the effects that this cross talk will have on circuit operation, the resulting delays and logic levels for the victim nets must be computed. In this paper, we propose four reflection wave propagation based analytical model for estimation of crosstalk. An emphasis was made on the distributed nature of the RLCG model, thus underlining the effect of parasitic coupling inductance and conductance on present and future on-chip interconnects.","PeriodicalId":308501,"journal":{"name":"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Semiconductor Electronics (ICSE2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2010.5549381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes a wave propagation based approach to derive crosstalk and delay between two coupled RLCG interconnects in the transform domain. The increase of clock frequency into the GHz range, coupled with longer length interconnects of small cross-section and low dielectric strength, can result in cross coupling effects between on-chip interconnects. The traditional analysis of crosstalk in a transmission line begins with a lossless LC representation, yielding a wave equation governing the system response. In order to determine the effects that this cross talk will have on circuit operation, the resulting delays and logic levels for the victim nets must be computed. In this paper, we propose four reflection wave propagation based analytical model for estimation of crosstalk. An emphasis was made on the distributed nature of the RLCG model, thus underlining the effect of parasitic coupling inductance and conductance on present and future on-chip interconnects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于波传播的分布式片上RLCG互连分析时延和串扰噪声模型
本文提出了一种基于波传播的方法来推导变换域中两个耦合RLCG互连之间的串扰和延迟。时钟频率增加到GHz范围,再加上更长的小截面和低介电强度的互连,会导致片上互连之间的交叉耦合效应。传输线串扰的传统分析从无损LC表示开始,得到控制系统响应的波动方程。为了确定这种串扰对电路操作的影响,必须计算受害网的延时和逻辑电平。本文提出了四种基于反射波传播的串扰估计解析模型。强调了RLCG模型的分布式特性,从而强调了寄生耦合电感和电导对当前和未来片上互连的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The sensing performance of hydrogen gas sensor utilizing undoped-AlGaN/GaN HEMT Optimum design of SU-8 based accelerometer with reduced cross axis sensitivity A 5-GHZ VCO for WLAN applications Effect of Mn doping on the structural and optical properties of ZnO films Ubiquitous sensor technologies: The way moving forward
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1