{"title":"A Gabor filter-based approach to fingerprint recognition","authors":"Chih-Jen Lee, Sheng-De Wang","doi":"10.1109/SIPS.1999.822342","DOIUrl":null,"url":null,"abstract":"We propose a Gabor-filter-based method for fingerprint recognition in this paper. The method makes use of Gabor filtering technologies and need only to do the core point detection before the feature extraction process without any other pre-processing steps such as smoothing, binarization, thinning, and minutiae detection. The proposed Gabor-filter-based features play a central role in the processes of fingerprint recognition, including local ridge orientation, core point detection, and feature extraction. Experimental results show that the recognition rate of the k-nearest neighbor classifier using the proposed features is 97.2% for a small-scale fingerprint database, and thus that the proposed method is an efficient and reliable approach.","PeriodicalId":275030,"journal":{"name":"1999 IEEE Workshop on Signal Processing Systems. SiPS 99. Design and Implementation (Cat. No.99TH8461)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE Workshop on Signal Processing Systems. SiPS 99. Design and Implementation (Cat. No.99TH8461)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.1999.822342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52
Abstract
We propose a Gabor-filter-based method for fingerprint recognition in this paper. The method makes use of Gabor filtering technologies and need only to do the core point detection before the feature extraction process without any other pre-processing steps such as smoothing, binarization, thinning, and minutiae detection. The proposed Gabor-filter-based features play a central role in the processes of fingerprint recognition, including local ridge orientation, core point detection, and feature extraction. Experimental results show that the recognition rate of the k-nearest neighbor classifier using the proposed features is 97.2% for a small-scale fingerprint database, and thus that the proposed method is an efficient and reliable approach.