M. Gaillardin, M. Raine, P. Paillet, M. Martinez, C. Marcandella, S. Girard, O. Duhamel, N. Richard, F. Andrieu, S. Barraud, O. Faynot
{"title":"Radiation effects in advanced SOI devices: New insights into Total Ionizing Dose and Single-Event Effects","authors":"M. Gaillardin, M. Raine, P. Paillet, M. Martinez, C. Marcandella, S. Girard, O. Duhamel, N. Richard, F. Andrieu, S. Barraud, O. Faynot","doi":"10.1109/S3S.2013.6716530","DOIUrl":null,"url":null,"abstract":"The SOI technology has already demonstrated intrinsic resistance to transient radiation effects due to the dielectric isolation provided by the buried oxide. But this special feature raises questions about their Total Ionizing Dose (TID) sensitivity, particularly in Fully Depleted (FD) SOI and multiple-gate devices. This paper thus gives an overview of recent advances in radiation effects on innovative SOI devices. Both TID and Single-Event Effects (SEE) in Extra Thin SOI (ETSOI) and FinFET devices are reviewed as well as upcoming challenges to mitigate radiation effects in nanometer scale SOI technologies.","PeriodicalId":219932,"journal":{"name":"2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S3S.2013.6716530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
The SOI technology has already demonstrated intrinsic resistance to transient radiation effects due to the dielectric isolation provided by the buried oxide. But this special feature raises questions about their Total Ionizing Dose (TID) sensitivity, particularly in Fully Depleted (FD) SOI and multiple-gate devices. This paper thus gives an overview of recent advances in radiation effects on innovative SOI devices. Both TID and Single-Event Effects (SEE) in Extra Thin SOI (ETSOI) and FinFET devices are reviewed as well as upcoming challenges to mitigate radiation effects in nanometer scale SOI technologies.