Determination of Angle of Arrival using Nonlinear Support Vector Machine Regressors

N. Chithra Raj, P. Aswathy, K. V. Sagar
{"title":"Determination of Angle of Arrival using Nonlinear Support Vector Machine Regressors","authors":"N. Chithra Raj, P. Aswathy, K. V. Sagar","doi":"10.1109/ICSCN.2007.350652","DOIUrl":null,"url":null,"abstract":"A combination of optimization theory, statistical learning, and kernel theory labeled as \"support vector machines\" (SVMs) can be applied to electromagnetic problems. Recently, popular machine learning algorithms have successfully been applied to wireless communication problems, notably spread spectrum receiver design, channel equalization, and adaptive beam forming with direction of arrival estimation (DOA). The capacity of communication systems has limitations due to co channel interference. In code division multiple access (CDMA), users can share the same frequency at the same time, but the number of users is limited by the multi-user interference (MUI). This paper presents an implementation of determination of angle of arrival (AOA) estimation based on nonlinear SVM regressors (SVR), an important component of CDMA communication systems","PeriodicalId":257948,"journal":{"name":"2007 International Conference on Signal Processing, Communications and Networking","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Signal Processing, Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCN.2007.350652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A combination of optimization theory, statistical learning, and kernel theory labeled as "support vector machines" (SVMs) can be applied to electromagnetic problems. Recently, popular machine learning algorithms have successfully been applied to wireless communication problems, notably spread spectrum receiver design, channel equalization, and adaptive beam forming with direction of arrival estimation (DOA). The capacity of communication systems has limitations due to co channel interference. In code division multiple access (CDMA), users can share the same frequency at the same time, but the number of users is limited by the multi-user interference (MUI). This paper presents an implementation of determination of angle of arrival (AOA) estimation based on nonlinear SVM regressors (SVR), an important component of CDMA communication systems
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用非线性支持向量机回归量确定到达角
优化理论、统计学习和核理论的组合被称为“支持向量机”(svm),可以应用于电磁问题。最近,流行的机器学习算法已经成功地应用于无线通信问题,特别是扩频接收机设计,信道均衡和自适应波束形成与到达方向估计(DOA)。由于同信道干扰,通信系统的容量受到限制。在码分多址(CDMA)技术中,用户可以同时使用同一频率,但受多用户干扰(MUI)的限制,用户数量有限。作为CDMA通信系统的重要组成部分,本文提出了一种基于非线性支持向量机回归量(SVR)的到达角估计确定方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multilayer Perceptron Neural Network Architecture using VHDL with Combinational Logic Sigmoid Function A Service Time Error Based Scheduling Algorithm for a Computational Grid ASIC Architecture for Implementing Blackman Windowing for Real Time Spectral Analysis FPGA Implementation of Parallel Pipelined Multiplier Less FFT Architecture Based System-On-Chip Design Targetting Multimedia Applications Modified Conservative Staircase Scheme for Video Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1