An application of Customer Embedding for Clustering

Ahmet Tugrul Bayrak
{"title":"An application of Customer Embedding for Clustering","authors":"Ahmet Tugrul Bayrak","doi":"10.1109/ICDMW58026.2022.00019","DOIUrl":null,"url":null,"abstract":"Effective and powerful strategic planning in a competitive business environment brings businesses to the fore. It is important for the growth of the business to move the customer to the center by acting more intelligently in the planning of marketing and sales activities. In order to find customer behavior patterns, the use of clustering models from machine learning algorithms can yield effective results. In this study, traditional customer clustering methods are enriched by using customer representations as features. To be able to achieve that, a natural language processing method, word embedding, is applied to customers. By using the powerful mechanism of word embedding methods, a customer space is created where the customers are represented based on the products they have bought. It is observed that appending customer embeddings for customer clustering have a positive effect and the results seem promising for further studies.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Effective and powerful strategic planning in a competitive business environment brings businesses to the fore. It is important for the growth of the business to move the customer to the center by acting more intelligently in the planning of marketing and sales activities. In order to find customer behavior patterns, the use of clustering models from machine learning algorithms can yield effective results. In this study, traditional customer clustering methods are enriched by using customer representations as features. To be able to achieve that, a natural language processing method, word embedding, is applied to customers. By using the powerful mechanism of word embedding methods, a customer space is created where the customers are represented based on the products they have bought. It is observed that appending customer embeddings for customer clustering have a positive effect and the results seem promising for further studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
客户嵌入在聚类中的应用
在竞争激烈的商业环境中,有效而有力的战略规划使企业脱颖而出。通过在市场营销和销售活动的计划中采取更明智的行动,将客户转移到中心位置,这对业务的增长非常重要。为了发现客户行为模式,使用机器学习算法中的聚类模型可以产生有效的结果。在本研究中,利用客户表征作为特征,丰富了传统的客户聚类方法。为了实现这一目标,一种自然语言处理方法——词嵌入——被应用于客户。通过使用强大的词嵌入方法机制,创建了一个客户空间,其中客户是根据他们购买的产品来表示的。观察到附加顾客嵌入对顾客聚类有积极的影响,结果表明有进一步研究的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Above Ground Biomass Estimation of a Cocoa Plantation using Machine Learning Backdoor Poisoning of Encrypted Traffic Classifiers Identifying Patterns of Vulnerability Incidence in Foundational Machine Learning Repositories on GitHub: An Unsupervised Graph Embedding Approach Data-driven Kernel Subspace Clustering with Local Manifold Preservation Persona-Based Conversational AI: State of the Art and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1