On Verification of Blur and Sharpness Metrics for No-reference Image Visual Quality Assessment

Sheyda Ghanbaralizadeh Bahnemiri, Mykola Ponomarenko, K. Egiazarian
{"title":"On Verification of Blur and Sharpness Metrics for No-reference Image Visual Quality Assessment","authors":"Sheyda Ghanbaralizadeh Bahnemiri, Mykola Ponomarenko, K. Egiazarian","doi":"10.1109/MMSP48831.2020.9287110","DOIUrl":null,"url":null,"abstract":"Natural images may contain regions with different levels of blur affecting image visual quality. No-reference image visual quality metrics should be able to effectively evaluate both blur and sharpness levels on a given image. In this paper, we propose a large image database BlurSet to verify this ability. BlurSet contains 5000 grayscale images of size 128×128 pixels with different levels of Gaussian blur and unsharp mask. For each image, a scalar value indicating the level of blur and the level of sharpness is provided. Several image quality assessment criteria are presented to evaluate how a given metric can estimate the level of blur/sharpness on BlurSet. An extensive comparative analysis of different no-reference metrics is carried out. Reachable levels of the quality criteria are evaluated using the proposed blur/sharpness convolutional neural network (BSCNN).","PeriodicalId":188283,"journal":{"name":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP48831.2020.9287110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Natural images may contain regions with different levels of blur affecting image visual quality. No-reference image visual quality metrics should be able to effectively evaluate both blur and sharpness levels on a given image. In this paper, we propose a large image database BlurSet to verify this ability. BlurSet contains 5000 grayscale images of size 128×128 pixels with different levels of Gaussian blur and unsharp mask. For each image, a scalar value indicating the level of blur and the level of sharpness is provided. Several image quality assessment criteria are presented to evaluate how a given metric can estimate the level of blur/sharpness on BlurSet. An extensive comparative analysis of different no-reference metrics is carried out. Reachable levels of the quality criteria are evaluated using the proposed blur/sharpness convolutional neural network (BSCNN).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无参考图像视觉质量评价中模糊和锐度度量的验证
自然图像可能包含影响图像视觉质量的不同程度模糊的区域。无参考图像视觉质量指标应该能够有效地评估给定图像上的模糊和清晰度水平。在本文中,我们提出了一个大型图像数据库BlurSet来验证这种能力。BlurSet包含5000张灰度图像,大小为128×128像素,具有不同程度的高斯模糊和不锐利的蒙版。对于每个图像,提供一个标量值,表示模糊程度和清晰度水平。提出了几个图像质量评估标准,以评估给定度量如何估计模糊/清晰度水平。对不同的无参考指标进行了广泛的比较分析。使用提出的模糊/清晰度卷积神经网络(BSCNN)评估质量标准的可达水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leveraging Active Perception for Improving Embedding-based Deep Face Recognition Subjective Test Dataset and Meta-data-based Models for 360° Streaming Video Quality The Suitability of Texture Vibrations Based on Visually Perceived Virtual Textures in Bimodal and Trimodal Conditions DEMI: Deep Video Quality Estimation Model using Perceptual Video Quality Dimensions Learned BRIEF – transferring the knowledge from hand-crafted to learning-based descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1