Multi-response optimization for AISI M7 Hard Turning Using the utility concept

Nitin P. Bhone, Nilesh Diwakar, S. Chinchanikar
{"title":"Multi-response optimization for AISI M7 Hard Turning Using the utility concept","authors":"Nitin P. Bhone, Nilesh Diwakar, S. Chinchanikar","doi":"10.58414/scientifictemper.2023.14.1.16","DOIUrl":null,"url":null,"abstract":"The utility idea is used to optimize AISI M7 hard turning in the present study. This study uses the Taguchi optimization approach to examine the effects of insert nose radius and machining parameters such as cutting speed, feed rate, and depth of cut on surface roughness (Ra) and material removal rate (MRR) in a turning operation. The signal-to-noise (S/N) ratio is used to analyze the performance characteristics in the turning of AISI M7 employing nose radius of 0.4, 0.8, and 1.2 mm carbide inserts on CNC turning centre in a three-level, four-parameter design of experiment using L9 orthogonal array using MINITAB 17. Every trial is held in a dry setting. According to the results of the current investigation, feed rate and nose radius are the most important variables affecting surface roughness and material removal rate.","PeriodicalId":443629,"journal":{"name":"THE SCIENTIFIC TEMPER","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"THE SCIENTIFIC TEMPER","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58414/scientifictemper.2023.14.1.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The utility idea is used to optimize AISI M7 hard turning in the present study. This study uses the Taguchi optimization approach to examine the effects of insert nose radius and machining parameters such as cutting speed, feed rate, and depth of cut on surface roughness (Ra) and material removal rate (MRR) in a turning operation. The signal-to-noise (S/N) ratio is used to analyze the performance characteristics in the turning of AISI M7 employing nose radius of 0.4, 0.8, and 1.2 mm carbide inserts on CNC turning centre in a three-level, four-parameter design of experiment using L9 orthogonal array using MINITAB 17. Every trial is held in a dry setting. According to the results of the current investigation, feed rate and nose radius are the most important variables affecting surface roughness and material removal rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于效用概念的aisim7硬车削多响应优化
本文采用效用思想对aisim7硬车削进行优化。本研究采用田口优化方法,考察了车削加工中切削速度、进给速度和切削深度等切削参数对表面粗糙度(Ra)和材料去除率(MRR)的影响。采用信噪比(S/N)方法,利用MINITAB 17软件,采用L9正交阵列进行三水平四参数实验设计,分析了切削齿径为0.4、0.8和1.2 mm的AISI M7刀具在数控车削中心车削时的性能特征。每次审判都在干燥的环境中进行。根据目前的研究结果,进给量和机头半径是影响表面粗糙度和材料去除率的最重要变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurement of agricultural productivity and levels of development in the Malaprabha river basin, Karnataka, India Assessing the role of EDTA and SA in mustard under Cd and Pb stress Trichoderma atrobrunneum: In vitro analysis of exoenzyme activity and antagonistic potential against plant pathogen from agricultural fields in the Patna region, India Exploring the therapeutic implications of nanoparticles for liquid tumors: A comprehensive review with special emphasis on green synthesis techniques in the context of Dalton’s lymphoma Nanoparticles as illuminating allies: Advancing diagnostic frontiers in COVID-19- A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1