SD-Unet: A Structured Dropout U-Net for Retinal Vessel Segmentation

Changlu Guo, Marton Szemenyei, Yang Pei, Yugen Yi, W. Zhou
{"title":"SD-Unet: A Structured Dropout U-Net for Retinal Vessel Segmentation","authors":"Changlu Guo, Marton Szemenyei, Yang Pei, Yugen Yi, W. Zhou","doi":"10.1109/BIBE.2019.00085","DOIUrl":null,"url":null,"abstract":"At present, artificial visual diagnosis of fundus diseases has low manual reading efficiency and strong subjectivity, which easily causes false and missed detections. Automatic segmentation of retinal blood vessels in fundus images is very effective for early diagnosis of diseases such as the hypertension and diabetes. In this paper, we utilize the U-shaped structure to exploit the local features of the retinal vessels and perform retinal vessel segmentation in an end-to-end manner. Inspired by the recently DropBlock, we propose a new method called Structured Dropout U-Net (SD-Unet), which abandons the traditional dropout for convolutional layers, and applies the structured dropout to regularize U-Net. Compared to the state-of-the-art methods, we demonstrate the superior performance of the proposed approach.","PeriodicalId":318819,"journal":{"name":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2019.00085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

At present, artificial visual diagnosis of fundus diseases has low manual reading efficiency and strong subjectivity, which easily causes false and missed detections. Automatic segmentation of retinal blood vessels in fundus images is very effective for early diagnosis of diseases such as the hypertension and diabetes. In this paper, we utilize the U-shaped structure to exploit the local features of the retinal vessels and perform retinal vessel segmentation in an end-to-end manner. Inspired by the recently DropBlock, we propose a new method called Structured Dropout U-Net (SD-Unet), which abandons the traditional dropout for convolutional layers, and applies the structured dropout to regularize U-Net. Compared to the state-of-the-art methods, we demonstrate the superior performance of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SD-Unet:一种用于视网膜血管分割的结构化Dropout U-Net
目前,眼底疾病的人工视觉诊断存在人工阅读效率低、主观性强的问题,容易造成误检和漏检。眼底图像中视网膜血管的自动分割对于高血压、糖尿病等疾病的早期诊断是非常有效的。在本文中,我们利用u型结构来挖掘视网膜血管的局部特征,并以端到端方式进行视网膜血管分割。受最近DropBlock的启发,我们提出了一种新的方法,称为结构化Dropout U-Net (SD-Unet),该方法放弃了传统的卷积层Dropout,并将结构化Dropout应用于正则化U-Net。与最先进的方法相比,我们证明了所提出的方法的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stability Investigation Using Hydrogen Bonds for Different Mutations and Drug Resistance in Non-Small Cell Lung Cancer Patients A Temporal Convolution Network Solution for EEG Motor Imagery Classification Evaluation of a Serious Game Promoting Nutrition and Food Literacy: Experiment Design and Preliminary Results Towards a Robust and Accurate Screening Tool for Dyslexia with Data Augmentation using GANs Exploring Fibrotic Disease Networks to Identify Common Molecular Mechanisms with IPF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1