Learning Bermudans

Riccardo Aiolfi, N. Moreni, M. Bianchetti, Marco Scaringi, Filippo Fogliani
{"title":"Learning Bermudans","authors":"Riccardo Aiolfi, N. Moreni, M. Bianchetti, Marco Scaringi, Filippo Fogliani","doi":"10.2139/ssrn.3837499","DOIUrl":null,"url":null,"abstract":"American and Bermudan-type financial instruments are often priced with specific Monte Carlo techniques whose efficiency critically depends on the effective dimensionality of the problem and the available computational power. In our work we focus on Bermudan Swaptions, well-known interest rate derivatives embedded in callable debt instruments or traded in the OTC market for hedging or speculation purposes, and we adopt an original pricing approach based on Supervised Learning (SL) algorithms. In particular, we link the price of a Bermudan Swaption to its natural hedges, i.e. the underlying European Swaptions, and other sound financial quantities through SL non-parametric regressions. We test different algorithms, from linear models to decision tree-based models and Artificial Neural Networks (ANN), analyzing their predictive performances. All the SL algorithms result to be reliable and fast, allowing to overcome the computational bottleneck of standard Monte Carlo simulations; the best performing algorithms for our problem result to be Ridge, ANN and Gradient Boosted Regression Tree. Moreover, using feature importance techniques, we are able to rank the most important driving factors of a Bermudan Swaption price, confirming that the value of the maximum underlying European Swaption is the prevailing feature.","PeriodicalId":406435,"journal":{"name":"CompSciRN: Other Machine Learning (Topic)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CompSciRN: Other Machine Learning (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3837499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

American and Bermudan-type financial instruments are often priced with specific Monte Carlo techniques whose efficiency critically depends on the effective dimensionality of the problem and the available computational power. In our work we focus on Bermudan Swaptions, well-known interest rate derivatives embedded in callable debt instruments or traded in the OTC market for hedging or speculation purposes, and we adopt an original pricing approach based on Supervised Learning (SL) algorithms. In particular, we link the price of a Bermudan Swaption to its natural hedges, i.e. the underlying European Swaptions, and other sound financial quantities through SL non-parametric regressions. We test different algorithms, from linear models to decision tree-based models and Artificial Neural Networks (ANN), analyzing their predictive performances. All the SL algorithms result to be reliable and fast, allowing to overcome the computational bottleneck of standard Monte Carlo simulations; the best performing algorithms for our problem result to be Ridge, ANN and Gradient Boosted Regression Tree. Moreover, using feature importance techniques, we are able to rank the most important driving factors of a Bermudan Swaption price, confirming that the value of the maximum underlying European Swaption is the prevailing feature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习百慕大
美国和百慕大类型的金融工具通常采用特定的蒙特卡罗技术定价,其效率主要取决于问题的有效维度和可用的计算能力。在我们的工作中,我们专注于bermuda Swaptions,这是一种众所周知的利率衍生品,嵌入在可赎回债务工具中,或在场外市场交易,用于对冲或投机目的,我们采用基于监督学习(SL)算法的原始定价方法。特别是,我们通过SL非参数回归将百慕大掉期的价格与其自然对冲(即潜在的欧洲掉期)和其他健全的金融数量联系起来。我们测试了不同的算法,从线性模型到基于决策树的模型和人工神经网络(ANN),分析了它们的预测性能。所有的SL算法结果可靠、快速,可以克服标准蒙特卡罗模拟的计算瓶颈;对于我们的问题结果,表现最好的算法是Ridge, ANN和Gradient boosting Regression Tree。此外,使用特征重要性技术,我们能够对百慕大掉期价格的最重要驱动因素进行排名,确认最大潜在欧洲掉期的价值是主要特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visualizing The Implicit Model Selection Tradeoff Troubleshooting: a Dynamic Solution for Achieving Reliable Fault Detection by Combining Augmented Reality and Machine Learning Policy Optimization Using Semiparametric Models for Dynamic Pricing Policy Gradient Methods Find the Nash Equilibrium in N-player General-sum Linear-quadratic Games Deep Learning under Model Uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1