Deep Learning under Model Uncertainty

M. Merz, Mario V. Wuthrich
{"title":"Deep Learning under Model Uncertainty","authors":"M. Merz, Mario V. Wuthrich","doi":"10.2139/ssrn.3875151","DOIUrl":null,"url":null,"abstract":"Deep learning has proven to lead to very powerful predictive models, often outperforming classical regression models such as generalized linear models. Deep learning models perform representation learning, which means that they do covariate engineering themselves so that explanatory variables are optimally transformed for the predictive problem at hand. A crucial object in deep learning is the loss function (objective function) for model fitting which implicitly reflects the distributional properties of the observed samples. The purpose of this article is to discuss the choice of this loss function, in particular, we give a specific proposal of a loss function choice under model uncertainty. This proposal turns out to robustify representation learning and prediction.","PeriodicalId":406435,"journal":{"name":"CompSciRN: Other Machine Learning (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CompSciRN: Other Machine Learning (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3875151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Deep learning has proven to lead to very powerful predictive models, often outperforming classical regression models such as generalized linear models. Deep learning models perform representation learning, which means that they do covariate engineering themselves so that explanatory variables are optimally transformed for the predictive problem at hand. A crucial object in deep learning is the loss function (objective function) for model fitting which implicitly reflects the distributional properties of the observed samples. The purpose of this article is to discuss the choice of this loss function, in particular, we give a specific proposal of a loss function choice under model uncertainty. This proposal turns out to robustify representation learning and prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模型不确定性下的深度学习
深度学习已被证明可以产生非常强大的预测模型,通常优于经典回归模型,如广义线性模型。深度学习模型执行表示学习,这意味着它们自己进行协变量工程,以便为手边的预测问题最佳地转换解释变量。深度学习的一个关键对象是模型拟合的损失函数(目标函数),它隐含地反映了观察样本的分布特性。本文的目的是讨论这种损失函数的选择,特别是我们给出了模型不确定性下的损失函数选择的具体建议。这一建议被证明是鲁棒的表征学习和预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visualizing The Implicit Model Selection Tradeoff Troubleshooting: a Dynamic Solution for Achieving Reliable Fault Detection by Combining Augmented Reality and Machine Learning Policy Optimization Using Semiparametric Models for Dynamic Pricing Policy Gradient Methods Find the Nash Equilibrium in N-player General-sum Linear-quadratic Games Deep Learning under Model Uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1