Reconstruction of electrical impedance tomography images using genetic algorithms and non-blind search

R. R. Ribeiro, A. R. S. Feitosa, R. E. D. Souza, W. Santos
{"title":"Reconstruction of electrical impedance tomography images using genetic algorithms and non-blind search","authors":"R. R. Ribeiro, A. R. S. Feitosa, R. E. D. Souza, W. Santos","doi":"10.1109/ISBI.2014.6867832","DOIUrl":null,"url":null,"abstract":"The development and improvement of non-invasive imaging techniques have been increasing in the last decades, due to interests from both academy and industry. Electrical Impedance Tomography (EIT) is a noninvasive imaging technique that offers a vast field of possibilities due to its low cost, portability, and safety of handling. However, EIT image reconstruction is an ill-posed problem. Herein this work we present an EIT reconstruction method based on the optimization of the relative error of reconstruction using genetic algorithms employing elitist strategies. The initial set of solutions used by the elitist genetic algorithm includes a noisy version of the solution obtained from the backprojection algorithm, according to Saha and Bandyopadhyay's criterion for non-blind initial search in optimization algorithms, in order to accelerate convergence and improve performance.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

The development and improvement of non-invasive imaging techniques have been increasing in the last decades, due to interests from both academy and industry. Electrical Impedance Tomography (EIT) is a noninvasive imaging technique that offers a vast field of possibilities due to its low cost, portability, and safety of handling. However, EIT image reconstruction is an ill-posed problem. Herein this work we present an EIT reconstruction method based on the optimization of the relative error of reconstruction using genetic algorithms employing elitist strategies. The initial set of solutions used by the elitist genetic algorithm includes a noisy version of the solution obtained from the backprojection algorithm, according to Saha and Bandyopadhyay's criterion for non-blind initial search in optimization algorithms, in order to accelerate convergence and improve performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用遗传算法和非盲搜索重建电阻抗断层成像
在过去的几十年里,由于学术界和工业界的兴趣,非侵入性成像技术的发展和改进一直在增加。电阻抗断层扫描(EIT)是一种无创成像技术,由于其低成本、便携性和操作安全性,它提供了广阔的可能性领域。然而,EIT图像重建是一个不适定问题。本文提出了一种基于优化重构相对误差的遗传算法重构方法。根据Saha和Bandyopadhyay优化算法的非盲初始搜索准则,精英遗传算法使用的初始解集包含了由反投影算法得到的解的带噪声版本,以加速收敛和提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MRI based attenuation correction for PET/MRI via MRF segmentation and sparse regression estimated CT DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks Functional parcellation of the hippocampus by clustering resting state fMRI signals Detecting cell assembly interaction patterns via Bayesian based change-point detection and graph inference model Topological texture-based method for mass detection in breast ultrasound image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1