Design and VLSI implementation of an adaptive delta-sigma modulator

G. Cauwenberghs
{"title":"Design and VLSI implementation of an adaptive delta-sigma modulator","authors":"G. Cauwenberghs","doi":"10.1109/ICVD.1998.646595","DOIUrl":null,"url":null,"abstract":"The quality and stability of noise shaping is a concern in the design of higher-order delta-sigma modulators for high-resolution, high-speed oversampled analog-to-digital conversion. We reformulate noise-shaping modulation alternatively as a nonlinear optimal control problem, where the objective is to find the binary modulation sequence that minimizes signal swing in a cascade of integrators operating on the difference between the input signal and the modulation sequence. We use reinforcement learning to adaptively optimize a nonlinear neural classifier which outputs modulation bits from the values of the input signal and integration state variables. Analogous to the classical pole balancing control problem, a punishment signal triggers learning whenever any of the integrators saturate. We train a simple classifier consisting of locally tuned, binary address encoded neurons to produce stable noise shaping modulation, and present experimental results obtained from analog VLSI modulators of orders one and two. The integrated classifier contains an array of 64 neurons trained on-chip with a simplified variant on reinforcement learning.","PeriodicalId":139023,"journal":{"name":"Proceedings Eleventh International Conference on VLSI Design","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eleventh International Conference on VLSI Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVD.1998.646595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The quality and stability of noise shaping is a concern in the design of higher-order delta-sigma modulators for high-resolution, high-speed oversampled analog-to-digital conversion. We reformulate noise-shaping modulation alternatively as a nonlinear optimal control problem, where the objective is to find the binary modulation sequence that minimizes signal swing in a cascade of integrators operating on the difference between the input signal and the modulation sequence. We use reinforcement learning to adaptively optimize a nonlinear neural classifier which outputs modulation bits from the values of the input signal and integration state variables. Analogous to the classical pole balancing control problem, a punishment signal triggers learning whenever any of the integrators saturate. We train a simple classifier consisting of locally tuned, binary address encoded neurons to produce stable noise shaping modulation, and present experimental results obtained from analog VLSI modulators of orders one and two. The integrated classifier contains an array of 64 neurons trained on-chip with a simplified variant on reinforcement learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应δ - σ调制器的设计与VLSI实现
在高阶delta-sigma调制器的高分辨率、高速过采样模数转换设计中,噪声整形的质量和稳定性是一个值得关注的问题。我们将噪声整形调制重新表述为一个非线性最优控制问题,其目标是在基于输入信号和调制序列之间差异的积分器级联中找到最小信号摆幅的二进制调制序列。我们使用强化学习来自适应优化非线性神经分类器,该分类器从输入信号和积分状态变量的值中输出调制比特。与经典的极点平衡控制问题类似,当任何积分器饱和时,惩罚信号触发学习。我们训练了一个由局部调谐的二进制地址编码神经元组成的简单分类器来产生稳定的噪声整形调制,并给出了从模拟VLSI调制器的一阶和二阶调制器中获得的实验结果。集成的分类器包含一个由64个神经元组成的阵列,这些神经元在芯片上通过强化学习的简化变体进行训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A case analysis of system partitioning and its relationship to high-level synthesis tasks Arbitrary precision arithmetic-SIMD style Partial reset methodologies for improving random-pattern testability and BIST of sequential circuits Top-down approach to technology migration for full-custom mask layouts Hybrid testing schemes based on mutual and signature testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1