A scalable latency-insensitive architecture for FPGA-accelerated semi-global matching in stereo vision applications

Jaco A. Hofmann, Jens Korinth, A. Koch
{"title":"A scalable latency-insensitive architecture for FPGA-accelerated semi-global matching in stereo vision applications","authors":"Jaco A. Hofmann, Jens Korinth, A. Koch","doi":"10.1109/ReConFig.2016.7857147","DOIUrl":null,"url":null,"abstract":"Semi-Global Matching (SGM) is a high-performance method for computing high-quality disparity maps from stereo camera images in machine vision applications. It is also suitable for direct hardware execution, e.g., in ASICs or reconfigurable logic devices. We present a highly parametrized FPGA implementation, scalable from simple low-resolution low-power use-cases, up to complex real-time full-HD multi-camera scenarios. By using a latency-insensitive design style, high-level synthesis from the Bluespec SystemVerilog next-generation hardware description language, and an automated design-space exploration flow, many implementation alternatives could be examined with high productivity. The use of the Threadpool Composer system-on-chip assembly tool allows the portable mapping of the SGM accelerator to different hardware platforms. The accelerator performance exceeds that of prior fixed-architecture approaches.","PeriodicalId":431909,"journal":{"name":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReConFig.2016.7857147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Semi-Global Matching (SGM) is a high-performance method for computing high-quality disparity maps from stereo camera images in machine vision applications. It is also suitable for direct hardware execution, e.g., in ASICs or reconfigurable logic devices. We present a highly parametrized FPGA implementation, scalable from simple low-resolution low-power use-cases, up to complex real-time full-HD multi-camera scenarios. By using a latency-insensitive design style, high-level synthesis from the Bluespec SystemVerilog next-generation hardware description language, and an automated design-space exploration flow, many implementation alternatives could be examined with high productivity. The use of the Threadpool Composer system-on-chip assembly tool allows the portable mapping of the SGM accelerator to different hardware platforms. The accelerator performance exceeds that of prior fixed-architecture approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
立体视觉应用中fpga加速半全局匹配的可扩展延迟不敏感架构
半全局匹配(Semi-Global Matching, SGM)是一种高性能的从立体相机图像中计算高质量视差映射的方法。它也适用于直接硬件执行,例如,在asic或可重构逻辑器件中。我们提出了一种高度参数化的FPGA实现,可从简单的低分辨率低功耗用例扩展到复杂的实时全高清多摄像头场景。通过使用延迟不敏感的设计风格,来自Bluespec SystemVerilog下一代硬件描述语言的高级合成,以及自动化的设计空间探索流,可以以高生产率检查许多实现替代方案。使用Threadpool Composer片上系统组装工具可以将SGM加速器移植到不同的硬件平台。加速器的性能优于先前的固定架构方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal processor interface for CGRA-based accelerators implemented on FPGAs Automatic framework to generate reconfigurable accelerators for option pricing applications Hobbit — Smaller but faster than a dwarf: Revisiting lightweight SHA-3 FPGA implementations FPGA implementation of optimized XBM specifications by transformation for AFSMs Data-rate-aware FPGA-based acceleration framework for streaming applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1