{"title":"Experiences in LP-IoT: EnviSense Deployment of Remotely Reprogrammable Environmental Sensors","authors":"Reese Grimsley, M. Marineau, Bob Iannucci","doi":"10.1145/3477085.3478988","DOIUrl":null,"url":null,"abstract":"The advent of Low Power Wide Area Networks (LPWAN) has improved the feasibility of wireless sensor networks for environmental sensing across wide areas. We have built EnviSense, an ultra-low power environmental sensing system, and deployed over a dozen of them across two locations in Northern California for hydrological monitoring applications with the U.S. Geological Survey (USGS). This paper details our experiences with the design and implementation of this system across two years, including six months of continuous measurement in the field. We describe the lessons learned for deployment planning, remote device management and programming, and system co-design with a domain-expert from the USGS.","PeriodicalId":422035,"journal":{"name":"Proceedings of the 1st ACM Workshop on No Power and Low Power Internet-of-Things","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM Workshop on No Power and Low Power Internet-of-Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3477085.3478988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The advent of Low Power Wide Area Networks (LPWAN) has improved the feasibility of wireless sensor networks for environmental sensing across wide areas. We have built EnviSense, an ultra-low power environmental sensing system, and deployed over a dozen of them across two locations in Northern California for hydrological monitoring applications with the U.S. Geological Survey (USGS). This paper details our experiences with the design and implementation of this system across two years, including six months of continuous measurement in the field. We describe the lessons learned for deployment planning, remote device management and programming, and system co-design with a domain-expert from the USGS.