Semi-Supervised Contrastive Learning for Generalizable Motor Imagery EEG Classification

Jinpei Han, Xiao Gu, Benny P. L. Lo
{"title":"Semi-Supervised Contrastive Learning for Generalizable Motor Imagery EEG Classification","authors":"Jinpei Han, Xiao Gu, Benny P. L. Lo","doi":"10.1109/BSN51625.2021.9507038","DOIUrl":null,"url":null,"abstract":"Electroencephalography (EEG) is one of the most widely used brain-activity recording methods in non-invasive brain-machine interfaces (BCIs). However, EEG data is highly nonlinear, and its datasets often suffer from issues such as data heterogeneity, label uncertainty and data/label scarcity. To address these, we propose a domain independent, end-to-end semi-supervised learning framework with contrastive learning and adversarial training strategies. Our method was evaluated in experiments with different amounts of labels and an ablation study in a motor imagery EEG dataset. The experiments demonstrate that the proposed framework with two different backbone deep neural networks show improved performance over their supervised counterparts under the same condition.","PeriodicalId":181520,"journal":{"name":"2021 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN51625.2021.9507038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Electroencephalography (EEG) is one of the most widely used brain-activity recording methods in non-invasive brain-machine interfaces (BCIs). However, EEG data is highly nonlinear, and its datasets often suffer from issues such as data heterogeneity, label uncertainty and data/label scarcity. To address these, we propose a domain independent, end-to-end semi-supervised learning framework with contrastive learning and adversarial training strategies. Our method was evaluated in experiments with different amounts of labels and an ablation study in a motor imagery EEG dataset. The experiments demonstrate that the proposed framework with two different backbone deep neural networks show improved performance over their supervised counterparts under the same condition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半监督对比学习在广义运动意象脑电分类中的应用
脑电图(EEG)是无创脑机接口(bci)中应用最广泛的脑活动记录方法之一。然而,脑电图数据是高度非线性的,其数据集经常受到数据异质性、标签不确定性和数据/标签稀缺性等问题的困扰。为了解决这些问题,我们提出了一个具有对比学习和对抗训练策略的领域独立的端到端半监督学习框架。我们的方法在不同数量的标签实验中进行了评估,并在运动图像脑电图数据集中进行了消融研究。实验表明,在相同条件下,采用两种不同骨干深度神经网络的框架比有监督的框架表现出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wavelet-based analysis of gait for automated frailty assessment with a wrist-worn device Heart Rate Detection using a Contactless Bed Sensor: A Comparative Study of Wavelet Methods Deep 3D Body Landmarks Estimation for Smart Garments Design Real-Time 3D Arm Motion Tracking Using the 6-axis IMU Sensor of a Smartwatch Multi-Objective Optimisation for SSVEP Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1