A monitoring system for laser beam welding based on an algorithm for spatter detection

L. Nicolosi, R. Tetzlaff, A. Blug, H. Höfler, D. Carl, F. Abt, A. Heider
{"title":"A monitoring system for laser beam welding based on an algorithm for spatter detection","authors":"L. Nicolosi, R. Tetzlaff, A. Blug, H. Höfler, D. Carl, F. Abt, A. Heider","doi":"10.1109/ECCTD.2011.6043301","DOIUrl":null,"url":null,"abstract":"This paper deals with the realization of a visual monitoring system for the real time detection of spatters in laser beam welding (LBW). Spatters deteriorate the corrosion resistance and the aesthetics of the welding result. Therefore, the real time detection of spatters allows providing on-line quality information about the process, thus reducing material waste in production chains. The proposed Cellular Neural Network (CNN) based algorithm has been implemented in the Eye-RIS vision system (VS). Monitoring rates up to 15 kHz have been reached, allowing the integration of the spatter detection with the evaluation of additional image features, e.g. the full penetration hole (FPH).","PeriodicalId":126960,"journal":{"name":"2011 20th European Conference on Circuit Theory and Design (ECCTD)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 20th European Conference on Circuit Theory and Design (ECCTD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCTD.2011.6043301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper deals with the realization of a visual monitoring system for the real time detection of spatters in laser beam welding (LBW). Spatters deteriorate the corrosion resistance and the aesthetics of the welding result. Therefore, the real time detection of spatters allows providing on-line quality information about the process, thus reducing material waste in production chains. The proposed Cellular Neural Network (CNN) based algorithm has been implemented in the Eye-RIS vision system (VS). Monitoring rates up to 15 kHz have been reached, allowing the integration of the spatter detection with the evaluation of additional image features, e.g. the full penetration hole (FPH).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于飞溅检测算法的激光焊接监控系统
本文研究了一种用于激光焊接过程中飞溅物实时检测的可视化监控系统的实现。飞溅会降低焊接结果的耐腐蚀性和美观性。因此,飞溅的实时检测允许提供有关该过程的在线质量信息,从而减少生产链中的材料浪费。提出的基于细胞神经网络(CNN)的算法已在Eye-RIS视觉系统(VS)中实现。监测速率高达15 kHz,允许将飞溅检测与其他图像特征的评估相结合,例如全穿透孔(FPH)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decade bandwidth single and cascaded travelling wave medium power amplifiers using sige hbts Hilbert transform by divide-and-conquer piecewise linear approximation Analysis and design of an array of two differential oscillators coupled through a resistive network Impact of NMOS/PMOS imbalance in Ultra-Low Voltage CMOS standard cells Utilization of distortion contribution analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1