NeuroDSP Accelerator for Face Detection Application

M. Paindavoine, O. Boisard, Alexandre Carbon, Jean-Marc Philippe, O. Brousse
{"title":"NeuroDSP Accelerator for Face Detection Application","authors":"M. Paindavoine, O. Boisard, Alexandre Carbon, Jean-Marc Philippe, O. Brousse","doi":"10.1145/2742060.2743769","DOIUrl":null,"url":null,"abstract":"Neuro-Inspired Vision approach, based on models from biology, allows to reduce the computational complexity. One of these models - The Hmax model - shows that the recognition of an object in the visual cortex mobilizes V1, V2 and V4 areas. From the computational point of view, V1 corresponds to the area of the directional filters (for example Gabor filters or wavelet filters). This information is then processed in the area V2 in order to obtain local maxima. This new information is then sent to an artificial neural network. This neural processing module corresponds to area V4 of the visual cortex and is intended to categorize objects present in the scene. In order to realize autonomous vision systems (low-power consumption) with such treatments inside, we studied a new architeure of a Neural Processor named NeuroDSP. We describe in this paper an optimized Hmax model implementation on this Neural Processor for a face detection application.","PeriodicalId":255133,"journal":{"name":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2742060.2743769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Neuro-Inspired Vision approach, based on models from biology, allows to reduce the computational complexity. One of these models - The Hmax model - shows that the recognition of an object in the visual cortex mobilizes V1, V2 and V4 areas. From the computational point of view, V1 corresponds to the area of the directional filters (for example Gabor filters or wavelet filters). This information is then processed in the area V2 in order to obtain local maxima. This new information is then sent to an artificial neural network. This neural processing module corresponds to area V4 of the visual cortex and is intended to categorize objects present in the scene. In order to realize autonomous vision systems (low-power consumption) with such treatments inside, we studied a new architeure of a Neural Processor named NeuroDSP. We describe in this paper an optimized Hmax model implementation on this Neural Processor for a face detection application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NeuroDSP加速器的人脸检测应用
基于生物学模型的神经启发视觉方法可以降低计算复杂性。其中一个模型——Hmax模型——表明,视觉皮层对物体的识别调动了V1、V2和V4区域。从计算的角度来看,V1对应于方向滤波器(例如Gabor滤波器或小波滤波器)的面积。然后在区域V2中处理这些信息,以获得局部最大值。这些新信息随后被发送到人工神经网络。这个神经处理模块对应于视觉皮层的V4区域,旨在对场景中存在的物体进行分类。为了实现具有这种内部处理的自主视觉系统(低功耗),我们研究了一种新的神经处理器(NeuroDSP)架构。在本文中,我们描述了一个优化的Hmax模型在该神经处理器上的实现,用于人脸检测应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Small-World Network Enabled Energy Efficient and Robust 3D NoC Architectures A Novel Framework for Temperature Dependence Aware Clock Skew Scheduling Session details: VLSI Design Proceedings of the 25th edition on Great Lakes Symposium on VLSI Energy Efficient RRAM Spiking Neural Network for Real Time Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1