Performance analysis and optimization of molecular dynamics simulation on Godson-T many-core processor

Liu Peng, A. Nakano, Guangming Tan, P. Vashishta, Dongrui Fan, Hao Zhang, R. Kalia, Fenglong Song
{"title":"Performance analysis and optimization of molecular dynamics simulation on Godson-T many-core processor","authors":"Liu Peng, A. Nakano, Guangming Tan, P. Vashishta, Dongrui Fan, Hao Zhang, R. Kalia, Fenglong Song","doi":"10.1145/2016604.2016643","DOIUrl":null,"url":null,"abstract":"Molecular dynamics (MD) simulation has broad applications, but its irregular memory-access pattern makes performance optimization a challenge. This paper presents a joint application/architecture study to enhance on-chip parallelism of MD on Godson-T -like many-core architecture. First, a preprocessing leveraging an adaptive divide-and-conquer framework is designed to exploit locality through memory hierarchy with software controlled memory. Then we propose three incremental optimization strategies: (1) a novel data-layout to re-organize linked-list cell data structures to improve data locality; (2) an on-chip locality-aware parallel algorithm to enhance data reuse; and (3) a pipelining algorithm to hide latency to shared memory. Experiments on Godson-T simulator exhibit strong-scaling parallel efficiency 0.99 on 64 cores, which is confirmed by an FPGA emulator. Detailed analysis shows that optimizations utilizing architectural features to maximize data locality and to enhance data reuse benefit scalability most. Furthermore, a simple performance model suggests that the optimization scheme is likely to scale well toward exascale. Certain architectural features are found essential for these optimizations, which could guide future hardware developments.","PeriodicalId":430420,"journal":{"name":"ACM International Conference on Computing Frontiers","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2016604.2016643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Molecular dynamics (MD) simulation has broad applications, but its irregular memory-access pattern makes performance optimization a challenge. This paper presents a joint application/architecture study to enhance on-chip parallelism of MD on Godson-T -like many-core architecture. First, a preprocessing leveraging an adaptive divide-and-conquer framework is designed to exploit locality through memory hierarchy with software controlled memory. Then we propose three incremental optimization strategies: (1) a novel data-layout to re-organize linked-list cell data structures to improve data locality; (2) an on-chip locality-aware parallel algorithm to enhance data reuse; and (3) a pipelining algorithm to hide latency to shared memory. Experiments on Godson-T simulator exhibit strong-scaling parallel efficiency 0.99 on 64 cores, which is confirmed by an FPGA emulator. Detailed analysis shows that optimizations utilizing architectural features to maximize data locality and to enhance data reuse benefit scalability most. Furthermore, a simple performance model suggests that the optimization scheme is likely to scale well toward exascale. Certain architectural features are found essential for these optimizations, which could guide future hardware developments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Godson-T多核处理器分子动力学仿真性能分析与优化
分子动力学(MD)模拟具有广泛的应用,但其不规则的内存访问模式给性能优化带来了挑战。本文提出了一种应用/架构联合研究方法,以提高MD在类Godson-T多核架构上的片上并行性。首先,设计了利用自适应分治框架的预处理,通过软件控制内存的内存层次利用局部性。在此基础上,提出了三种增量优化策略:(1)采用一种新的数据布局,重新组织链表单元数据结构,提高数据局部性;(2)芯片上位置感知并行算法,增强数据重用;(3)采用流水线算法来隐藏共享内存的延迟。在goson - t模拟器上的实验表明,该算法在64核上的并行效率为0.99,并通过FPGA仿真得到了验证。详细的分析表明,利用体系结构特性最大化数据局部性和增强数据重用的优化最有利于可伸缩性。此外,一个简单的性能模型表明,优化方案可能很好地扩展到百亿亿次。某些架构特性对于这些优化至关重要,它们可以指导未来的硬件开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strategies for improving performance and energy efficiency on a many-core Cost-effective soft-error protection for SRAM-based structures in GPGPUs Kinship: efficient resource management for performance and functionally asymmetric platforms An algorithm for parallel calculation of trigonometric functions DCNSim: a unified and cross-layer computer architecture simulation framework for data center network research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1