Range Query Using Learning-Aware RPS in DHT-Based Peer-to-Peer Networks

Ze Deng, D. Feng, Ke Zhou, Zhan Shi, Chao Luo
{"title":"Range Query Using Learning-Aware RPS in DHT-Based Peer-to-Peer Networks","authors":"Ze Deng, D. Feng, Ke Zhou, Zhan Shi, Chao Luo","doi":"10.1109/CCGRID.2009.25","DOIUrl":null,"url":null,"abstract":"Range query in Peer-to-Peer networks based on Distributed Hash Table (DHT) is still an open problem. The traditional way uses order-preserving hashing functions to create value indexes that are placed and stored on the corresponding peers to support range query. The way, however, suffers from high index maintenance costs. To avoid the issue, a scalable blind search method over DHTs - recursive partition search (RPS) can be used. But, RPS still easily incurs high network overhead as network size grows. Thus, in this paper, a learning-aware RPS (LARPS) is proposed to overcome the disadvantages of two approaches above mentioned. Extensive experiments show LARPS is a scalable and robust approach for range query, especially in the following cases: a) query range is wide, b) the requested resources follow Zipf distribution, and c) the number of required resources is small.","PeriodicalId":118263,"journal":{"name":"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2009.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Range query in Peer-to-Peer networks based on Distributed Hash Table (DHT) is still an open problem. The traditional way uses order-preserving hashing functions to create value indexes that are placed and stored on the corresponding peers to support range query. The way, however, suffers from high index maintenance costs. To avoid the issue, a scalable blind search method over DHTs - recursive partition search (RPS) can be used. But, RPS still easily incurs high network overhead as network size grows. Thus, in this paper, a learning-aware RPS (LARPS) is proposed to overcome the disadvantages of two approaches above mentioned. Extensive experiments show LARPS is a scalable and robust approach for range query, especially in the following cases: a) query range is wide, b) the requested resources follow Zipf distribution, and c) the number of required resources is small.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于dht的对等网络中使用学习感知RPS的范围查询
基于分布式哈希表(DHT)的点对点网络中的范围查询仍然是一个有待解决的问题。传统的方法是使用保持顺序的散列函数来创建值索引,这些值索引放置并存储在相应的对等节点上,以支持范围查询。然而,这种方法的缺点是索引维护成本高。为了避免这个问题,可以使用一种可扩展的dht盲搜索方法——递归分区搜索(RPS)。但是,随着网络规模的增长,RPS仍然容易导致高网络开销。因此,本文提出了一种学习感知RPS (LARPS)来克服上述两种方法的缺点。大量实验表明,LARPS是一种可扩展且鲁棒的范围查询方法,特别是在以下情况下:查询范围大,请求资源遵循Zipf分布,所需资源数量少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Visualization Scalability through Time Intervals and Hierarchical Organization of Monitoring Data Collusion Detection for Grid Computing Resource Information Aggregation in Hierarchical Grid Networks Distributed Indexing for Resource Discovery in P2P Networks Challenges and Opportunities on Parallel/Distributed Programming for Large-scale: From Multi-core to Clouds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1