Towards Effective Microalgae Object Detection Solutions to IEEE UV 2022 “Vision Meets Alage” Object Detection Challenge

Yunchen Zhang, Wei Zeng, Fan Yang
{"title":"Towards Effective Microalgae Object Detection Solutions to IEEE UV 2022 “Vision Meets Alage” Object Detection Challenge","authors":"Yunchen Zhang, Wei Zeng, Fan Yang","doi":"10.1109/UV56588.2022.10185487","DOIUrl":null,"url":null,"abstract":"This technical report introduces our solution for microalgae object detection in IEEE UV 2022 Vision Meets Alage Object Detection Challenge. The purpose of this challenge is to employ computer vision to more effectively analyze population change in ocean microalgae species. Therefore, we performed a comprehensive analysis of the distribution of the microalgae dataset and designed a customized training strategy for the task. In order to better identify the categories and coordinates of microalgae in microscopic images, we propose CBSwin-Cascade RCNN++ as a strong baseline for microalgae detection. Our final submission the results, which achieves 56.13 in mAP 0.5:0.95 on a single model, and obtains 57.09 in mAP 0.5:0.95 with the ensembled models.","PeriodicalId":211011,"journal":{"name":"2022 6th International Conference on Universal Village (UV)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Universal Village (UV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UV56588.2022.10185487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This technical report introduces our solution for microalgae object detection in IEEE UV 2022 Vision Meets Alage Object Detection Challenge. The purpose of this challenge is to employ computer vision to more effectively analyze population change in ocean microalgae species. Therefore, we performed a comprehensive analysis of the distribution of the microalgae dataset and designed a customized training strategy for the task. In order to better identify the categories and coordinates of microalgae in microscopic images, we propose CBSwin-Cascade RCNN++ as a strong baseline for microalgae detection. Our final submission the results, which achieves 56.13 in mAP 0.5:0.95 on a single model, and obtains 57.09 in mAP 0.5:0.95 with the ensembled models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向IEEE UV 2022“视觉与藻类相遇”目标检测挑战的有效微藻目标检测解决方案
本技术报告介绍了我们在IEEE UV 2022视觉与藻类物体检测挑战赛中微藻物体检测的解决方案。这项挑战的目的是利用计算机视觉更有效地分析海洋微藻物种的种群变化。因此,我们对微藻数据集的分布进行了全面分析,并针对该任务设计了定制化的训练策略。为了更好地识别微藻在显微图像中的类别和坐标,我们提出了CBSwin-Cascade RCNN++作为微藻检测的强基线。我们最终提交了结果,在单个模型上mAP 0.5:0.95得到56.13,在集成模型上mAP 0.5:0.95得到57.09。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generative Cooperative Network for Person Image Generation Image Caption Enhancement with GRIT, Portable ResNet and BART Context-Tuning Dynamical Simulation Study of Hybrid Solar-Fossil Fuel Thermochemical Storage and Electricity, Heat and Cold Generation System Bag of Tricks for “Vision Meet Alage” Object Detection Challenge Density Functional Theory Study of Adding Ionic Liquid to Aqueous Ammonia System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1