Inaam Ilahi, M. Usama, M. Farooq, M. Janjua, Junaid Qadir
{"title":"LoRaDRL: Deep Reinforcement Learning Based Adaptive PHY Layer Transmission Parameters Selection for LoRaWAN","authors":"Inaam Ilahi, M. Usama, M. Farooq, M. Janjua, Junaid Qadir","doi":"10.1109/LCN48667.2020.9314772","DOIUrl":null,"url":null,"abstract":"The performance of densely-deployed low-power wide-area networks (LPWANs) can significantly deteriorate due to packets collisions, and one of the main reasons for that is the rule-based PHY layer transmission parameters assignment algorithms. LoRaWAN is a leading LPWAN technology where LoRa serves as the physical layer. Here, we propose and evaluate a deep reinforcement learning (DRL)-based PHY layer transmission parameter assignment algorithm for LoRaWAN. Our algorithm ensures fewer collisions and better network performance compared to the existing state-of-the-art PHY layer transmission parameter assignment algorithms for LoRaWAN. Our algorithm outperforms the state of the art learning-based technique achieving up to 500% improvement of PDR in some cases.","PeriodicalId":245782,"journal":{"name":"2020 IEEE 45th Conference on Local Computer Networks (LCN)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 45th Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN48667.2020.9314772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
The performance of densely-deployed low-power wide-area networks (LPWANs) can significantly deteriorate due to packets collisions, and one of the main reasons for that is the rule-based PHY layer transmission parameters assignment algorithms. LoRaWAN is a leading LPWAN technology where LoRa serves as the physical layer. Here, we propose and evaluate a deep reinforcement learning (DRL)-based PHY layer transmission parameter assignment algorithm for LoRaWAN. Our algorithm ensures fewer collisions and better network performance compared to the existing state-of-the-art PHY layer transmission parameter assignment algorithms for LoRaWAN. Our algorithm outperforms the state of the art learning-based technique achieving up to 500% improvement of PDR in some cases.