Projection and Contraction Methods for Solving Symmetric Cone Variational Inequalities

Yuhua Zeng, Ye Lou
{"title":"Projection and Contraction Methods for Solving Symmetric Cone Variational Inequalities","authors":"Yuhua Zeng, Ye Lou","doi":"10.1109/BCGIN.2011.180","DOIUrl":null,"url":null,"abstract":"In this paper, we employ projection and contraction methods (PC method) to solve variational inequality defined on a closed and convex symmetric cone (SCVI). By introducing Jordan product operator into a finite-dimensional inner product space $V$, we get an Euclidean Jordan algebras $(V, \\circ)$. For a given $x\\in V$, we have a spectral decomposition of $x$ with respect to a Jordan frame of $V$. Therefore, we can easily obtain projection of $x$ on the square cone $K$ of $V$($K$ is a symmetric cone). We describe some implementation issues of PC-methods for solving $\\mbox{SCVI}(K, F)$ with uniformly strong monotone mapping $F$, while $K=R_+^n$, $K=\\Lambda^n_+$ and $K=S^n_+$, respectively. Finally, we propose an implementation of PC methods for $\\mbox{SCVI}(S^n_+, F)$ with uniformly strong monotone and Lipschitz continue mapping $F: S^n\\right arrow S^n$, and give some numerical results to show validity of the proposed method.","PeriodicalId":127523,"journal":{"name":"2011 International Conference on Business Computing and Global Informatization","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Business Computing and Global Informatization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCGIN.2011.180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we employ projection and contraction methods (PC method) to solve variational inequality defined on a closed and convex symmetric cone (SCVI). By introducing Jordan product operator into a finite-dimensional inner product space $V$, we get an Euclidean Jordan algebras $(V, \circ)$. For a given $x\in V$, we have a spectral decomposition of $x$ with respect to a Jordan frame of $V$. Therefore, we can easily obtain projection of $x$ on the square cone $K$ of $V$($K$ is a symmetric cone). We describe some implementation issues of PC-methods for solving $\mbox{SCVI}(K, F)$ with uniformly strong monotone mapping $F$, while $K=R_+^n$, $K=\Lambda^n_+$ and $K=S^n_+$, respectively. Finally, we propose an implementation of PC methods for $\mbox{SCVI}(S^n_+, F)$ with uniformly strong monotone and Lipschitz continue mapping $F: S^n\right arrow S^n$, and give some numerical results to show validity of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求解对称锥变分不等式的投影与收缩方法
本文利用投影和收缩方法(PC方法)求解了定义在闭凸对称锥(SCVI)上的变分不等式。将Jordan积算子引入有限维内积空间,得到欧几里德Jordan代数(V, \circ)。对于给定的V$中的$x,我们得到了$x$关于$V$的Jordan坐标系的谱分解。因此,我们可以很容易地得到$x$在$V$的正方形锥$K$上的投影($K$是对称锥)。描述了在$K=R_+^n$、$K=\Lambda^n_+$和$K=S^n_+$时,具有一致强单调映射$F$的$\mbox{SCVI}(K, F)$的pc -方法的一些实现问题。最后,我们给出了具有一致强单调的$\mbox{SCVI}(S^n_+, F)$和Lipschitz连续映射$F: S^n\右箭头S^n$的PC方法的实现,并给出了一些数值结果来证明所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Bisect K-Means Clustering Algorithm A Labeling Algorithm for the Earliest and Latest Time-Varying Maximum Flow Problems The Research on Motive Force of Urban Development Based on Informationization The Eddy Currents Calculation Based on the Least Square Algorithm for EAST A Passive Locating Algorithm for Motive Target Based on Modified Particle Filter Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1