{"title":"Multifunctional lipopolymeric nanosystem for photothermal assisted cancer therapy","authors":"Monika Pebam, A. Rengan","doi":"10.1109/NEMS57332.2023.10190857","DOIUrl":null,"url":null,"abstract":"PTT has shown promising target cancer therapy and has been able to achieve high cancer cell death rates while rescuing normal tissue. In this article, IR-775 a less explored hydrophobic photosensitizer was used in combination with polyphenols for the treatment of cancer. The nanosystem consists of HSPC, PLA, IR-775 dye and the polyphenols constituents from Terminalia chebula. The lipopolymeric nanosystem HP pIR NPs (HSPC-PLA-polyphenols extract-IR775) exhibit size range of (142.6 ± 2nm). HP pIR NPs have shown excellent intracellular uptake when studied against A549 and zebrafish. Both the PDT/PTT trigger ROS production and enhance the cancer cell death inhibiting the growth of the remnant cell.","PeriodicalId":142575,"journal":{"name":"2023 IEEE 18th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 18th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS57332.2023.10190857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
PTT has shown promising target cancer therapy and has been able to achieve high cancer cell death rates while rescuing normal tissue. In this article, IR-775 a less explored hydrophobic photosensitizer was used in combination with polyphenols for the treatment of cancer. The nanosystem consists of HSPC, PLA, IR-775 dye and the polyphenols constituents from Terminalia chebula. The lipopolymeric nanosystem HP pIR NPs (HSPC-PLA-polyphenols extract-IR775) exhibit size range of (142.6 ± 2nm). HP pIR NPs have shown excellent intracellular uptake when studied against A549 and zebrafish. Both the PDT/PTT trigger ROS production and enhance the cancer cell death inhibiting the growth of the remnant cell.
PTT已经显示出有希望的靶向癌症治疗,并且能够在挽救正常组织的同时实现高癌细胞死亡率。在这篇文章中,IR-775是一种较少被探索的疏水性光敏剂,它与多酚类化合物联合用于治疗癌症。该纳米体系由HSPC、PLA、IR-775染料和慈兰多酚类成分组成。脂聚合物纳米体系HP pIR NPs (hspc - pla -多酚提取物- ir775)的尺寸范围为(142.6±2nm)。在对A549和斑马鱼的研究中,HP pIR NPs显示出优异的细胞内摄取。PDT/PTT均可触发ROS的产生,增强癌细胞的死亡,抑制残余细胞的生长。