CFCR: A Convolution and Fusion Model for Cross-platform Recommendation

Shengze Yu, Xin Wang, Wenwu Zhu
{"title":"CFCR: A Convolution and Fusion Model for Cross-platform Recommendation","authors":"Shengze Yu, Xin Wang, Wenwu Zhu","doi":"10.1145/3469877.3495639","DOIUrl":null,"url":null,"abstract":"With the emergence of various online platforms, associating different platforms is playing an increasingly important role in many applications. Cross-platform recommendation aims to improve recommendation accuracy through associating information from different platforms. Existing methods do not fully exploit high-order nonlinear connectivity information in cross-domain recommendation scenario and suffer from domain-incompatibility problem. In this paper, we propose an end-to-end convolution and fusion model for cross-platform recommendation (CFCR). The proposed CFCR model utilizes Graph Convolution Networks (GCN) to extract user and item features on graphs from different platforms, and fuses cross-platform information by Multimodal AutoEncoder (MAE) with common latent user features. Therefore, the high-order connectivity information is preserved to the most extent and domain-invariant user representations are automatically obtained. The domain-incompatible information is spontaneously discarded to avoid messing up the cross-platform association. Extensive experiments for the proposed CFCR model on real-world dataset demonstrate its advantages over existing cross-platform recommendation methods in terms of various evaluation metrics.","PeriodicalId":210974,"journal":{"name":"ACM Multimedia Asia","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469877.3495639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the emergence of various online platforms, associating different platforms is playing an increasingly important role in many applications. Cross-platform recommendation aims to improve recommendation accuracy through associating information from different platforms. Existing methods do not fully exploit high-order nonlinear connectivity information in cross-domain recommendation scenario and suffer from domain-incompatibility problem. In this paper, we propose an end-to-end convolution and fusion model for cross-platform recommendation (CFCR). The proposed CFCR model utilizes Graph Convolution Networks (GCN) to extract user and item features on graphs from different platforms, and fuses cross-platform information by Multimodal AutoEncoder (MAE) with common latent user features. Therefore, the high-order connectivity information is preserved to the most extent and domain-invariant user representations are automatically obtained. The domain-incompatible information is spontaneously discarded to avoid messing up the cross-platform association. Extensive experiments for the proposed CFCR model on real-world dataset demonstrate its advantages over existing cross-platform recommendation methods in terms of various evaluation metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨平台推荐的卷积和融合模型
随着各种在线平台的出现,不同平台的关联在许多应用中发挥着越来越重要的作用。跨平台推荐的目的是通过关联不同平台的信息来提高推荐的准确性。现有方法在跨域推荐场景中没有充分利用高阶非线性连接信息,存在域不兼容问题。本文提出了一种跨平台推荐的端到端卷积融合模型。该模型利用图卷积网络(GCN)提取不同平台图上的用户和项目特征,并利用多模态自动编码器(MAE)与常见的潜在用户特征融合跨平台信息。因此,最大程度地保留了高阶连接信息,并自动获得了域不变的用户表示。领域不兼容的信息被自动丢弃,以避免混淆跨平台关联。本文提出的CFCR模型在真实数据集上的大量实验表明,它在各种评估指标方面优于现有的跨平台推荐方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Scale Graph Convolutional Network and Dynamic Iterative Class Loss for Ship Segmentation in Remote Sensing Images Structural Knowledge Organization and Transfer for Class-Incremental Learning Hard-Boundary Attention Network for Nuclei Instance Segmentation Score Transformer: Generating Musical Score from Note-level Representation CMRD-Net: An Improved Method for Underwater Image Enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1