A comparison of reinforcement learning based approaches to appliance scheduling

Namit Chauhan, Neha Choudhary, K. George
{"title":"A comparison of reinforcement learning based approaches to appliance scheduling","authors":"Namit Chauhan, Neha Choudhary, K. George","doi":"10.1109/IC3I.2016.7917970","DOIUrl":null,"url":null,"abstract":"Reinforcement learning is often proposed as a technique for intelligent control in a smart home setup with dynamic real-time energy pricing and advanced sub-metering infrastructure. In this paper, we introduce a variation of State Action Reward State Action (SARSA) as an optimization algorithm for appliance scheduling in smart homes with multiple appliances and compare it with the popular reinforcement learning method Q-learning. A simple, intuitive and unique treelike Markov decision process (MDP) structure of appliances is proposed which takes into account the states, such as on/off/runtime status, of all schedulable appliances but does not require the knowledge of the state to state transition probabilities.","PeriodicalId":305971,"journal":{"name":"2016 2nd International Conference on Contemporary Computing and Informatics (IC3I)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Contemporary Computing and Informatics (IC3I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3I.2016.7917970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Reinforcement learning is often proposed as a technique for intelligent control in a smart home setup with dynamic real-time energy pricing and advanced sub-metering infrastructure. In this paper, we introduce a variation of State Action Reward State Action (SARSA) as an optimization algorithm for appliance scheduling in smart homes with multiple appliances and compare it with the popular reinforcement learning method Q-learning. A simple, intuitive and unique treelike Markov decision process (MDP) structure of appliances is proposed which takes into account the states, such as on/off/runtime status, of all schedulable appliances but does not require the knowledge of the state to state transition probabilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于强化学习的电器调度方法比较
强化学习通常被提出作为智能家居设置中的智能控制技术,具有动态实时能源定价和先进的分计量基础设施。在本文中,我们引入了一种状态动作奖励状态动作(SARSA)的变体作为多家电智能家居中家电调度的优化算法,并将其与流行的强化学习方法Q-learning进行了比较。提出了一种简单、直观、独特的树状马尔可夫决策过程结构,该结构考虑了所有可调度设备的状态,如开/关/运行状态,但不需要知道状态到状态转移概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Single-resistance-controlled quadrature oscillator employing two current differencing buffered amplifier FMODC: Fuzzy guided multi-objective document clustering by GA A study on disruption tolerant session based mobile architecture How effective is Black Hole Algorithm? Design of a high gain 16 element array of microstrip patch antennas for millimeter wave applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1