{"title":"A compact Gm-C filter architecture with an ultra-low corner frequency and high ground-noise rejection","authors":"Yu-Chieh Lee, Wen-Yang Hsu, Tai-Ting Huang, Hsin Chen","doi":"10.1109/BioCAS.2013.6679703","DOIUrl":null,"url":null,"abstract":"Active filters with a very low corner frequency (of only a few hertz or below) are usually demanded at the frontend circuitry of biomedical instruments. This paper presents a novel circuit architecture for implementing the Bessel low-pass filter with an ultra-low corner frequency and negligible interferences from the ground. Basing on the transconductance-capacitor (Gm-C) architecture, the proposed filter incorporates a differential amplifier into the negative feedback loop to scale down the corner frequency, as well as to eliminate noise coupling from the ground. To demonstrate the design concept, a second-order Bessel filter is fabricated with the 0.35μm CMOS technology. With a corner frequency of around 1Hz, the filter consumes only 1.2μW and a chip area of 0.089mm2. Moreover, the 60-Hz interference from the ground is proved to be attenuated by more than 36dB.","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2013.6679703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Active filters with a very low corner frequency (of only a few hertz or below) are usually demanded at the frontend circuitry of biomedical instruments. This paper presents a novel circuit architecture for implementing the Bessel low-pass filter with an ultra-low corner frequency and negligible interferences from the ground. Basing on the transconductance-capacitor (Gm-C) architecture, the proposed filter incorporates a differential amplifier into the negative feedback loop to scale down the corner frequency, as well as to eliminate noise coupling from the ground. To demonstrate the design concept, a second-order Bessel filter is fabricated with the 0.35μm CMOS technology. With a corner frequency of around 1Hz, the filter consumes only 1.2μW and a chip area of 0.089mm2. Moreover, the 60-Hz interference from the ground is proved to be attenuated by more than 36dB.