Time-domain Battery State-of-Charge Estimation based on Domain-Transformation and Linear Discriminant Analysis

P. Carbone, A. D. Angelis, Emanuele Buchicchio, Francesco Santoni, A. Moschitta
{"title":"Time-domain Battery State-of-Charge Estimation based on Domain-Transformation and Linear Discriminant Analysis","authors":"P. Carbone, A. D. Angelis, Emanuele Buchicchio, Francesco Santoni, A. Moschitta","doi":"10.1109/MetroAutomotive57488.2023.10219107","DOIUrl":null,"url":null,"abstract":"This paper considers the estimation of the state-of-charge of rechargeable batteries based on a classifier trained using two methods. One method uses the values of the parameters in an equivalent circuit model, identified using a frequency-domain approach. The other method is based on a mathematical approximation of the battery voltage time-response to a given 3 s current signal. Classification resorts to a linear discriminant analysis classifier trained both by experimental data and by data obtained through augmentation methods. It is shown that the time-domain based classifier may achieve better performance in terms of probability of correct state-of-charge classification, using experiments of significant less duration than those associated with the usage of the frequency-domain experiments.","PeriodicalId":115847,"journal":{"name":"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Workshop on Metrology for Automotive (MetroAutomotive)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAutomotive57488.2023.10219107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers the estimation of the state-of-charge of rechargeable batteries based on a classifier trained using two methods. One method uses the values of the parameters in an equivalent circuit model, identified using a frequency-domain approach. The other method is based on a mathematical approximation of the battery voltage time-response to a given 3 s current signal. Classification resorts to a linear discriminant analysis classifier trained both by experimental data and by data obtained through augmentation methods. It is shown that the time-domain based classifier may achieve better performance in terms of probability of correct state-of-charge classification, using experiments of significant less duration than those associated with the usage of the frequency-domain experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于域变换和线性判别分析的电池电量状态时域估计
本文考虑了基于两种方法训练的分类器对可充电电池的充电状态进行估计。一种方法使用等效电路模型中的参数值,使用频域方法识别。另一种方法是基于给定3秒电流信号下电池电压时间响应的数学近似。分类采用由实验数据和通过增强方法获得的数据训练的线性判别分析分类器。结果表明,与使用频域实验相比,使用明显少于持续时间的实验,基于时域的分类器在正确电荷状态分类的概率方面可以取得更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A strain-based estimation of tire-road forces through a supervised learning approach Anti-Interference Algorithm of Environment-Aware Millimeter Wave Radar An Adaptive TinyML Unsupervised Online Learning Algorithm for Driver Behavior Analysis Research on Automatic Calibration Method of Transmission Loss for Millimeter-Wave Radar Testing System in Intelligent Vehicle Exponential degradation model for Remaining Useful Life estimation of electrolytic capacitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1