Distributed Actor-Critic Learning Using Emphatic Weightings

M. Stanković, M. Beko, S. Stankovic
{"title":"Distributed Actor-Critic Learning Using Emphatic Weightings","authors":"M. Stanković, M. Beko, S. Stankovic","doi":"10.1109/CoDIT55151.2022.9804022","DOIUrl":null,"url":null,"abstract":"In this paper a new Actor-Critic algorithm is proposed for distributed off-policy multi-agent reinforcement learning. It is composed of the Emphatic Temporal Difference ETD${\\left(\\lambda \\right)}$ algorithm (at the Critic stage) and a complementary distributed consensus-based algorithm using the exact gradients of a given criterion function (at the Actor stage). It is demonstrated that the algorithm converges weakly to the invariant set of an ordinary differential equation (ODE) characterizing the whole algorithm. Simulation results are presented as an illustration of high efficiency of the proposed algorithm.","PeriodicalId":185510,"journal":{"name":"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT55151.2022.9804022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper a new Actor-Critic algorithm is proposed for distributed off-policy multi-agent reinforcement learning. It is composed of the Emphatic Temporal Difference ETD${\left(\lambda \right)}$ algorithm (at the Critic stage) and a complementary distributed consensus-based algorithm using the exact gradients of a given criterion function (at the Actor stage). It is demonstrated that the algorithm converges weakly to the invariant set of an ordinary differential equation (ODE) characterizing the whole algorithm. Simulation results are presented as an illustration of high efficiency of the proposed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用强调权重的分布式演员-评论家学习
本文提出了一种用于分布式离策略多智能体强化学习的Actor-Critic算法。它由强调时间差异ETD ${\left(\lambda \right)}$算法(在批评阶段)和使用给定标准函数的精确梯度的互补分布式基于共识的算法(在行动者阶段)组成。证明了该算法弱收敛于描述整个算法的常微分方程的不变量集。仿真结果表明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of Human Model Parameters for the Human-Machine Control Systems Design A Dual-channel Attention Model for Optical Microscope Pollen Classification Application of Machine Learning in the producer's optimal control problem with non-stable demand Comparison Between Model-Based and Data-Based Methods for Fault Diagnosis of Railway Turnouts Improved Multi-Particle Swarm Optimization based on multi-exemplar and forgetting ability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1