Morphing Airfoil Design via L-System Generated Topology Optimization

Madalyn Mikkelsen, Michayal Mathew, P. Walgren, Brent R. Bielefeldt, Pedro B. C. Leal, D. Hartl, A. F. Arrieta
{"title":"Morphing Airfoil Design via L-System Generated Topology Optimization","authors":"Madalyn Mikkelsen, Michayal Mathew, P. Walgren, Brent R. Bielefeldt, Pedro B. C. Leal, D. Hartl, A. F. Arrieta","doi":"10.1115/smasis2019-5695","DOIUrl":null,"url":null,"abstract":"\n Morphing airfoils present an effective approach to managing the different requirements in each segment of a mission profile (e.g., takeoff/landing, cruise, and active maneuvering). In this work, an approach to morphing airfoil design that couples aerodynamic performance and internal structural configuration is detailed. The internal structural topology is formulated using a Lindenmayer System (L-System) coupled with a graph-based interpreter known as Spatial Interpretation for Development of Reconfigurable Structures (SPIDRS). The L-System encodes design variables that are interpreted via SPIDRS graphical operations and governs the development of the internal configuration (composed of elastic structural members and actuators). The global optimization uses a weakly coupled fluid-structure interaction (FSI) scheme for a first-order estimation of the aeroelastic loads that are critical for airfoil aerodynamic performance and structural integrity. Each airfoil is evaluated in two states: a standard non-actuated state to determine performance in standard operating conditions (e.g., cruise) and a high lift state, where internal shape memory alloy actuators are deformed to create a high lift configuration for the airfoil (e.g., takeoff/landing). Evaluating the aerodynamic performance of airfoils in these two states results in a series of potential solutions that best manage the tradeoff between aerodynamic metrics for both evaluated cases.","PeriodicalId":235262,"journal":{"name":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/smasis2019-5695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Morphing airfoils present an effective approach to managing the different requirements in each segment of a mission profile (e.g., takeoff/landing, cruise, and active maneuvering). In this work, an approach to morphing airfoil design that couples aerodynamic performance and internal structural configuration is detailed. The internal structural topology is formulated using a Lindenmayer System (L-System) coupled with a graph-based interpreter known as Spatial Interpretation for Development of Reconfigurable Structures (SPIDRS). The L-System encodes design variables that are interpreted via SPIDRS graphical operations and governs the development of the internal configuration (composed of elastic structural members and actuators). The global optimization uses a weakly coupled fluid-structure interaction (FSI) scheme for a first-order estimation of the aeroelastic loads that are critical for airfoil aerodynamic performance and structural integrity. Each airfoil is evaluated in two states: a standard non-actuated state to determine performance in standard operating conditions (e.g., cruise) and a high lift state, where internal shape memory alloy actuators are deformed to create a high lift configuration for the airfoil (e.g., takeoff/landing). Evaluating the aerodynamic performance of airfoils in these two states results in a series of potential solutions that best manage the tradeoff between aerodynamic metrics for both evaluated cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过L-System生成的拓扑优化设计变形翼型
变形翼型提出了一种有效的方法来管理任务剖面(例如,起飞/着陆,巡航和主动机动)的每个部分的不同要求。本文详细介绍了一种结合气动性能和内部结构配置的变形翼型设计方法。内部结构拓扑使用林登迈尔系统(L-System)和基于图形的解释器(称为可重构结构开发的空间解释(SPIDRS))来制定。L-System对设计变量进行编码,这些设计变量通过SPIDRS图形操作进行解释,并控制内部配置(由弹性结构成员和执行器组成)的开发。全局优化采用弱耦合流固耦合(FSI)格式对翼型气动性能和结构完整性至关重要的气动弹性载荷进行一阶估计。每个翼型在两种状态下进行评估:一个标准的非驱动状态,以确定在标准操作条件下的性能(例如,巡航)和一个高升力状态,其中内部形状记忆合金执行器变形,以创建一个高升力配置的翼型(例如,起飞/着陆)。在这两种状态下评估翼型的气动性能会产生一系列潜在的解决方案,以最好地管理两种评估情况下气动指标之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Coupled Electro-Thermo-Mechanical Modeling of Shape Memory Polymers Design-Oriented Multifidelity Fluid Simulation Using Machine Learned Fidelity Mapping Self-Sensing Composite Materials With Intelligent Fabrics Developing a Smart Façade System Controller for Wind-Induced Vibration Mitigation in Tall Buildings Methodology for Minimizing Operational Influences of the Test Rig During Long-Term Investigations of SMA Wires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1