Automated tuning of query degree of parallelism via machine learning

Zhiwei Fan, Rathijit Sen, Paraschos Koutris, Aws Albarghouthi
{"title":"Automated tuning of query degree of parallelism via machine learning","authors":"Zhiwei Fan, Rathijit Sen, Paraschos Koutris, Aws Albarghouthi","doi":"10.1145/3401071.3401656","DOIUrl":null,"url":null,"abstract":"Determining the degree of parallelism (DOP) for query execution is of great importance to both performance and resource provisioning. However, recent work that applies machine learning (ML) to query optimization and query performance prediction in relational database management systems (RDBMSs) has ignored the effect of intra-query parallelism. In this work, we argue that determining the optimal or near-optimal DOP for query execution is a fundamental and challenging task that benefits both query performance and cost-benefit tradeoffs. We then present promising preliminary results on how ML techniques can be applied to automate DOP tuning. We conclude with a list of challenges we encountered, as well as future directions for our work.","PeriodicalId":371439,"journal":{"name":"Proceedings of the Third International Workshop on Exploiting Artificial Intelligence Techniques for Data Management","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third International Workshop on Exploiting Artificial Intelligence Techniques for Data Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3401071.3401656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Determining the degree of parallelism (DOP) for query execution is of great importance to both performance and resource provisioning. However, recent work that applies machine learning (ML) to query optimization and query performance prediction in relational database management systems (RDBMSs) has ignored the effect of intra-query parallelism. In this work, we argue that determining the optimal or near-optimal DOP for query execution is a fundamental and challenging task that benefits both query performance and cost-benefit tradeoffs. We then present promising preliminary results on how ML techniques can be applied to automate DOP tuning. We conclude with a list of challenges we encountered, as well as future directions for our work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过机器学习自动调优查询并行度
确定查询执行的并行度(DOP)对于性能和资源供应都非常重要。然而,最近将机器学习(ML)应用于关系数据库管理系统(rdbms)中的查询优化和查询性能预测的工作忽略了查询内并行性的影响。在这项工作中,我们认为确定查询执行的最优或接近最优DOP是一项基本且具有挑战性的任务,它有利于查询性能和成本效益权衡。然后,我们就如何将ML技术应用于自动DOP调优提出了有希望的初步结果。最后,我们列出了我们遇到的挑战,以及我们未来的工作方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research challenges in deep reinforcement learning-based join query optimization Bandit join: preliminary results Automated tuning of query degree of parallelism via machine learning PartLy Best of both worlds: combining traditional and machine learning models for cardinality estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1