{"title":"PartLy","authors":"A. S. Abdelhamid, Walid G. Aref","doi":"10.1145/3401071.3401660","DOIUrl":null,"url":null,"abstract":"Data partitioning plays a critical role in data stream processing. Current data partitioning techniques use simple, static heuristics that do not incorporate feedback about the quality of the partitioning decision (i.e., fire and forget strategy). Hence, the data partitioner often repeatedly chooses the same decision. In this paper, we argue that reinforcement learning techniques can be applied to address this problem. The use of artificial neural networks can facilitate learning of efficient partitioning policies. We identify the challenges that emerge when applying machine learning techniques to the data partitioning problem for distributed data stream processing. Furthermore, we introduce PartLy, a proof-of-concept data partitioner, and present preliminary results that indicate PartLy's potential to match the performance of state-of-the-art techniques in terms of partitioning quality, while minimizing storage and processing overheads.","PeriodicalId":371439,"journal":{"name":"Proceedings of the Third International Workshop on Exploiting Artificial Intelligence Techniques for Data Management","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third International Workshop on Exploiting Artificial Intelligence Techniques for Data Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3401071.3401660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Data partitioning plays a critical role in data stream processing. Current data partitioning techniques use simple, static heuristics that do not incorporate feedback about the quality of the partitioning decision (i.e., fire and forget strategy). Hence, the data partitioner often repeatedly chooses the same decision. In this paper, we argue that reinforcement learning techniques can be applied to address this problem. The use of artificial neural networks can facilitate learning of efficient partitioning policies. We identify the challenges that emerge when applying machine learning techniques to the data partitioning problem for distributed data stream processing. Furthermore, we introduce PartLy, a proof-of-concept data partitioner, and present preliminary results that indicate PartLy's potential to match the performance of state-of-the-art techniques in terms of partitioning quality, while minimizing storage and processing overheads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
部分
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research challenges in deep reinforcement learning-based join query optimization Bandit join: preliminary results Automated tuning of query degree of parallelism via machine learning PartLy Best of both worlds: combining traditional and machine learning models for cardinality estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1