{"title":"PartLy","authors":"A. S. Abdelhamid, Walid G. Aref","doi":"10.1145/3401071.3401660","DOIUrl":null,"url":null,"abstract":"Data partitioning plays a critical role in data stream processing. Current data partitioning techniques use simple, static heuristics that do not incorporate feedback about the quality of the partitioning decision (i.e., fire and forget strategy). Hence, the data partitioner often repeatedly chooses the same decision. In this paper, we argue that reinforcement learning techniques can be applied to address this problem. The use of artificial neural networks can facilitate learning of efficient partitioning policies. We identify the challenges that emerge when applying machine learning techniques to the data partitioning problem for distributed data stream processing. Furthermore, we introduce PartLy, a proof-of-concept data partitioner, and present preliminary results that indicate PartLy's potential to match the performance of state-of-the-art techniques in terms of partitioning quality, while minimizing storage and processing overheads.","PeriodicalId":371439,"journal":{"name":"Proceedings of the Third International Workshop on Exploiting Artificial Intelligence Techniques for Data Management","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third International Workshop on Exploiting Artificial Intelligence Techniques for Data Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3401071.3401660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Data partitioning plays a critical role in data stream processing. Current data partitioning techniques use simple, static heuristics that do not incorporate feedback about the quality of the partitioning decision (i.e., fire and forget strategy). Hence, the data partitioner often repeatedly chooses the same decision. In this paper, we argue that reinforcement learning techniques can be applied to address this problem. The use of artificial neural networks can facilitate learning of efficient partitioning policies. We identify the challenges that emerge when applying machine learning techniques to the data partitioning problem for distributed data stream processing. Furthermore, we introduce PartLy, a proof-of-concept data partitioner, and present preliminary results that indicate PartLy's potential to match the performance of state-of-the-art techniques in terms of partitioning quality, while minimizing storage and processing overheads.