Tuning of Indirect IMC-PID Controller based on PSO Algorithm

Bipin Singh, Bharat Verma, P. Padhy
{"title":"Tuning of Indirect IMC-PID Controller based on PSO Algorithm","authors":"Bipin Singh, Bharat Verma, P. Padhy","doi":"10.1109/CAPS52117.2021.9730677","DOIUrl":null,"url":null,"abstract":"This paper provides the implementation of indirect design approach of IMC-PID controller based on PSO algorithms. In indirect design approach a plant G (s) is shifted by a constant parameter ψ. Then an IMC-PID controller is designed for the shifted version of the plant G(s -ψ). Gains of the PID controller is depends on the only one unknows Parameters ψ when the plant parameters are known. Here is an assumption that the plant parameters are known. Particle Swarm optimization is also used for determining the optimized values of ψ for PID controller. Proposed method also does not use any IMC filter, and it provides less settling time, minimum overshoot, less integral absolute error (IAE) and increases the robustness of the system.","PeriodicalId":445427,"journal":{"name":"2021 International Conference on Control, Automation, Power and Signal Processing (CAPS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Control, Automation, Power and Signal Processing (CAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAPS52117.2021.9730677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides the implementation of indirect design approach of IMC-PID controller based on PSO algorithms. In indirect design approach a plant G (s) is shifted by a constant parameter ψ. Then an IMC-PID controller is designed for the shifted version of the plant G(s -ψ). Gains of the PID controller is depends on the only one unknows Parameters ψ when the plant parameters are known. Here is an assumption that the plant parameters are known. Particle Swarm optimization is also used for determining the optimized values of ψ for PID controller. Proposed method also does not use any IMC filter, and it provides less settling time, minimum overshoot, less integral absolute error (IAE) and increases the robustness of the system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群算法的间接IMC-PID控制器整定
本文提出了一种基于粒子群算法的IMC-PID控制器间接设计方法的实现。在间接设计方法中,工厂G (s)被一个常数参数ψ移位。然后设计了一种IMC-PID控制器来控制移位后的G(s -ψ)。当对象参数已知时,PID控制器的增益依赖于唯一一个未知参数ψ。这里假设工厂参数是已知的。粒子群算法还用于确定PID控制器的ψ的最优值。该方法不使用任何IMC滤波器,稳定时间短,超调量小,积分绝对误差小,提高了系统的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An improved Faster RCNN for Pedestrian Detection A Robust System to Detect and Prevent Boat Accidents Impact of Wind Distributed Generation on Distribution Systems Embedded with Electric Vehicles A Review on Different Techniques of Demand Response Management and its Future Scopes Designing of Automatic Corridor Lighting System Using PIR Motion Sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1