Thermal design methodology for high-heat-flux single-phase and two-phase micro-channel heat sinks

W. Qu, I. Mudawar
{"title":"Thermal design methodology for high-heat-flux single-phase and two-phase micro-channel heat sinks","authors":"W. Qu, I. Mudawar","doi":"10.1109/ITHERM.2002.1012478","DOIUrl":null,"url":null,"abstract":"This paper explores several issues important to the thermal design of single-phase and two-phase micro-channel heat sinks. The first part of the paper concerns single-phase heat transfer in rectangular micro-channels. Experimental results are compared with predictions based on both numerical as well as fin analysis models. While the best agreement between predictions and experimental results was achieved with numerical simulation, a few of the fin models are found to provide fairly accurate predictions. The second part of the paper focuses on predicting the incipient boiling heat flux. A comprehensive model based on bubble departure and superheat criteria is developed and validated with experimental data. The incipience model is capable of predicting the location, shape and size of bubbles departing in rectangular micro-channels. In the third part of the study, an analytical model is developed to predict pressure drop across a two-phase micro-channel heat sink. This model provides a detailed assessment of pressure drop concerns with two-phase micro-channels, including compressibility, flashing and choking. Overall, the present study provides important guidelines concerning practical implementation of micro-channel heat sinks in high-heat-flux electronic cooling applications.","PeriodicalId":299933,"journal":{"name":"ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258)","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"56","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2002.1012478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 56

Abstract

This paper explores several issues important to the thermal design of single-phase and two-phase micro-channel heat sinks. The first part of the paper concerns single-phase heat transfer in rectangular micro-channels. Experimental results are compared with predictions based on both numerical as well as fin analysis models. While the best agreement between predictions and experimental results was achieved with numerical simulation, a few of the fin models are found to provide fairly accurate predictions. The second part of the paper focuses on predicting the incipient boiling heat flux. A comprehensive model based on bubble departure and superheat criteria is developed and validated with experimental data. The incipience model is capable of predicting the location, shape and size of bubbles departing in rectangular micro-channels. In the third part of the study, an analytical model is developed to predict pressure drop across a two-phase micro-channel heat sink. This model provides a detailed assessment of pressure drop concerns with two-phase micro-channels, including compressibility, flashing and choking. Overall, the present study provides important guidelines concerning practical implementation of micro-channel heat sinks in high-heat-flux electronic cooling applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高热流密度单相和两相微通道散热器的热设计方法
本文探讨了单相和两相微通道散热器热设计的几个重要问题。本文的第一部分研究了矩形微通道内的单相传热。实验结果与基于数值模型和翅片分析模型的预测结果进行了比较。虽然预测和实验结果之间的最佳一致性是通过数值模拟实现的,但发现一些鳍模型提供了相当准确的预测。论文的第二部分着重于初沸热通量的预测。建立了基于气泡偏离和过热准则的综合模型,并用实验数据进行了验证。该初始模型能够预测气泡在矩形微通道中离开的位置、形状和大小。在研究的第三部分,建立了一个分析模型来预测两相微通道散热器的压降。该模型提供了对两相微通道的压降问题的详细评估,包括可压缩性、闪动和堵塞。总的来说,本研究为高热流密度电子冷却应用中微通道散热器的实际实施提供了重要的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of lumped R/sub th/C/sub th/ and approximate steady-state methods for reducing transient analysis solution time Multistage thermoelectric micro coolers A new approach to the design of complex heat transfer systems: notebook-size computer design Multimedia thermal CAD system for electronics multilayer structures with compact cold plate Modeling superconformal electrodeposition in trenches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1