Can Data-Only Exploits be Detected at Runtime Using Hardware Events?: A Case Study of the Heartbleed Vulnerability

G. Torres, Chen Liu
{"title":"Can Data-Only Exploits be Detected at Runtime Using Hardware Events?: A Case Study of the Heartbleed Vulnerability","authors":"G. Torres, Chen Liu","doi":"10.1145/2948618.2948620","DOIUrl":null,"url":null,"abstract":"In this study, we investigate the feasibility of using an anomaly-based detection scheme that utilizes information collected from hardware performance counters at runtime to detect data-oriented attacks in user space libraries. Using the Heartbleed vulnerability as a test case, we studied twelve different hardware events and used a Support Vector Machine (SVM) model to classify between regular and abnormal behaviors. Our results demonstrated a detection accuracy over 92% for the two-class SVM model and over 70% for the one-class SVM model. We also studied the limitations of using certain type of hardware events and discussed possible implications of their use in detection schemes. Overall, the experiments conducted suggest that data-oriented attacks can be more difficult to detect than control-data exploits, as certain events are susceptible to interference hence less reliable.","PeriodicalId":141766,"journal":{"name":"Hardware and Architectural Support for Security and Privacy","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hardware and Architectural Support for Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2948618.2948620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In this study, we investigate the feasibility of using an anomaly-based detection scheme that utilizes information collected from hardware performance counters at runtime to detect data-oriented attacks in user space libraries. Using the Heartbleed vulnerability as a test case, we studied twelve different hardware events and used a Support Vector Machine (SVM) model to classify between regular and abnormal behaviors. Our results demonstrated a detection accuracy over 92% for the two-class SVM model and over 70% for the one-class SVM model. We also studied the limitations of using certain type of hardware events and discussed possible implications of their use in detection schemes. Overall, the experiments conducted suggest that data-oriented attacks can be more difficult to detect than control-data exploits, as certain events are susceptible to interference hence less reliable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可以在运行时使用硬件事件检测仅数据的漏洞?:心脏出血漏洞的案例研究
在本研究中,我们研究了使用基于异常的检测方案的可行性,该方案利用运行时从硬件性能计数器收集的信息来检测用户空间库中面向数据的攻击。以“心脏出血”漏洞为例,研究了12种不同的硬件事件,并使用支持向量机(SVM)模型对正常和异常行为进行分类。我们的结果表明,两类SVM模型的检测精度超过92%,一类SVM模型的检测精度超过70%。我们还研究了使用某些类型的硬件事件的局限性,并讨论了在检测方案中使用它们的可能含义。总的来说,所进行的实验表明,面向数据的攻击比控制数据的攻击更难以检测,因为某些事件容易受到干扰,因此不太可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis and Hardware Optimization of Lattice Post-Quantum Cryptography Workloads Position Paper: Consider Hardware-enhanced Defenses for Rootkit Attacks Uncovering Hidden Instructions in Armv8-A Implementations Implementing the Draft RISC-V Scalar Cryptography Extensions Position Paper:Defending Direct Memory Access with CHERI Capabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1