Technical Perspective

N. Mamoulis
{"title":"Technical Perspective","authors":"N. Mamoulis","doi":"10.1145/3542700.3542712","DOIUrl":null,"url":null,"abstract":"The optimal assignment problem is a classic combinatorial optimization problem. Given a set of n agents A, a set T of m tasks, and an n×m cost matrix C, the objective is to find the matching between A and T, which minimizes or maximizes an aggregate cost of the assigned agent-task pairs. In its standard definition, n = m and we are looking for the 1-to-1 matching with the minimum total cost. From a graph theory perspective, this is a weighted bipartite graph matching problem. A classic algorithm for solving the assignment problem is the Hungarian algorithm (a.k.a. Kuhn-Munkres algorithm) [3], which bears a O(n3) computational cost (assuming that n = m); this is the best run-time of any strongly polynomial algorithm for this problem. There are many variants of the assignment problem, which differ in the optimization objective (i.e., minimize/maximize an aggregate cost, achieve a stable matching, maximize the number of agents matched which their top preferences, etc.) and in whether there are constraints on the number of matches for each agent or task.","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3542700.3542712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The optimal assignment problem is a classic combinatorial optimization problem. Given a set of n agents A, a set T of m tasks, and an n×m cost matrix C, the objective is to find the matching between A and T, which minimizes or maximizes an aggregate cost of the assigned agent-task pairs. In its standard definition, n = m and we are looking for the 1-to-1 matching with the minimum total cost. From a graph theory perspective, this is a weighted bipartite graph matching problem. A classic algorithm for solving the assignment problem is the Hungarian algorithm (a.k.a. Kuhn-Munkres algorithm) [3], which bears a O(n3) computational cost (assuming that n = m); this is the best run-time of any strongly polynomial algorithm for this problem. There are many variants of the assignment problem, which differ in the optimization objective (i.e., minimize/maximize an aggregate cost, achieve a stable matching, maximize the number of agents matched which their top preferences, etc.) and in whether there are constraints on the number of matches for each agent or task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
技术的角度来看
最优分配问题是一个经典的组合优化问题。给定一个包含n个智能体的集合a,一个包含m个任务的集合T,以及一个n×m成本矩阵C,目标是找到a和T之间的匹配,从而最小化或最大化分配的智能体-任务对的总成本。在它的标准定义中,n = m,我们正在寻找与最小总成本的1对1匹配。从图论的角度来看,这是一个加权二部图匹配问题。求解分配问题的经典算法是匈牙利算法(又名Kuhn-Munkres算法)[3],其计算代价为O(n3)(假设n = m);对于这个问题,这是所有强多项式算法的最佳运行时间。分配问题有许多变体,它们在优化目标(即最小化/最大化总成本,实现稳定匹配,最大化与其首选项匹配的代理数量等)以及每个代理或任务的匹配数量是否存在约束方面有所不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical Perspective: Efficient and Reusable Lazy Sampling Unicorn: A Unified Multi-Tasking Matching Model Learning to Restructure Tables Automatically DBSP: Incremental Computation on Streams and Its Applications to Databases Efficient and Reusable Lazy Sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1