D. Michelucci, P. Schreck, Simon E. B. Thierry, Christoph Fünfzig, J. Génevaux
{"title":"Using the witness method to detect rigid subsystems of geometric constraints in CAD","authors":"D. Michelucci, P. Schreck, Simon E. B. Thierry, Christoph Fünfzig, J. Génevaux","doi":"10.1145/1839778.1839791","DOIUrl":null,"url":null,"abstract":"This paper deals with the resolution of geometric constraint systems encountered in CAD-CAM. The main results are that the witness method can be used to detect that a constraint system is over-constrained and that the computation of the maximal rigid subsystems of a system leads to a powerful decomposition method.\n In a first step, we recall the theoretical framework of the witness method in geometric constraint solving and extend this method to generate a witness. We show then that it can be used to incrementally detect over-constrainedness. We give an algorithm to efficiently identify all maximal rigid parts of a geometric constraint system. We introduce the algorithm of W-decomposition to identify all rigid subsystems: it manages to decompose systems which were not decomposable by classical combinatorial methods.","PeriodicalId":216067,"journal":{"name":"Symposium on Solid and Physical Modeling","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Solid and Physical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1839778.1839791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper deals with the resolution of geometric constraint systems encountered in CAD-CAM. The main results are that the witness method can be used to detect that a constraint system is over-constrained and that the computation of the maximal rigid subsystems of a system leads to a powerful decomposition method.
In a first step, we recall the theoretical framework of the witness method in geometric constraint solving and extend this method to generate a witness. We show then that it can be used to incrementally detect over-constrainedness. We give an algorithm to efficiently identify all maximal rigid parts of a geometric constraint system. We introduce the algorithm of W-decomposition to identify all rigid subsystems: it manages to decompose systems which were not decomposable by classical combinatorial methods.