Justin D. Brody, Anna M. R. Dixon, Daniel Donavanik, R. Robinson, W. Nothwang
{"title":"Relevance and redundancy as selection techniques for human-autonomy sensor fusion","authors":"Justin D. Brody, Anna M. R. Dixon, Daniel Donavanik, R. Robinson, W. Nothwang","doi":"10.1109/MFI.2017.8170409","DOIUrl":null,"url":null,"abstract":"Human-autonomy teaming using physiological sensors poses a novel sensor fusion problem due to the dynamic nature of the sensor models and the difficulty of modeling their temporal and inter-subject variability. Developing analytical models therefore requires defining objective criteria for selection and weighting of sensors under an appropriate fusion paradigm. We investigate a selection methodology grounded in two intuitions: 1) that maximizing the relevance between sensors and target classes will enhance overall performance within a given fusion scheme; and 2) that minimizing redundancy amongst the selected sensors will not harm fusion performance and may improve precision and recall. We apply these intuitions to a human-autonomy image classification task. Preliminary results indicate strong support for the relevance hypothesis and weaker effects for the redundancy hypothesis. This relationship and its application to human-autonomy sensor fusion are explored within a framework employing three common fusion methodologies: Naive Bayes fusion, Dempster-Shafer theory, and Dynamic Belief Fusion.","PeriodicalId":402371,"journal":{"name":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI.2017.8170409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Human-autonomy teaming using physiological sensors poses a novel sensor fusion problem due to the dynamic nature of the sensor models and the difficulty of modeling their temporal and inter-subject variability. Developing analytical models therefore requires defining objective criteria for selection and weighting of sensors under an appropriate fusion paradigm. We investigate a selection methodology grounded in two intuitions: 1) that maximizing the relevance between sensors and target classes will enhance overall performance within a given fusion scheme; and 2) that minimizing redundancy amongst the selected sensors will not harm fusion performance and may improve precision and recall. We apply these intuitions to a human-autonomy image classification task. Preliminary results indicate strong support for the relevance hypothesis and weaker effects for the redundancy hypothesis. This relationship and its application to human-autonomy sensor fusion are explored within a framework employing three common fusion methodologies: Naive Bayes fusion, Dempster-Shafer theory, and Dynamic Belief Fusion.