A human motion analysis using the rhythm - a estimate method of dance motion with autoregressive model

K. Kojima, T. Otobe, M. Hironaga, S. Nagae
{"title":"A human motion analysis using the rhythm - a estimate method of dance motion with autoregressive model","authors":"K. Kojima, T. Otobe, M. Hironaga, S. Nagae","doi":"10.1109/ROMAN.2000.892493","DOIUrl":null,"url":null,"abstract":"We aims to reproduce the Japanese traditional dance motion recorded in image database. We propose an estimate method of dance motion using the autoregressive model. In statistical motion estimation with the autoregressive model, the decision of degree is a very important. To decide the suitably degree, we define the \"rhythm points\" or the time of starting and ending of the motion. We refer to it as the \"cycle of every motion\" or a number of the frame between three rhythm points. To compare our method with others, we applied two methods: the first method decides the degree from AIC (Akaike's information criterion); and the second method, which we proposed, decides the degree from the cycle of the motion. We introduce the term \"decision of suitably degree for a estimate method of dance motion\". A good result for an estimate of dance motion was achieved.","PeriodicalId":337709,"journal":{"name":"Proceedings 9th IEEE International Workshop on Robot and Human Interactive Communication. IEEE RO-MAN 2000 (Cat. No.00TH8499)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 9th IEEE International Workshop on Robot and Human Interactive Communication. IEEE RO-MAN 2000 (Cat. No.00TH8499)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.2000.892493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We aims to reproduce the Japanese traditional dance motion recorded in image database. We propose an estimate method of dance motion using the autoregressive model. In statistical motion estimation with the autoregressive model, the decision of degree is a very important. To decide the suitably degree, we define the "rhythm points" or the time of starting and ending of the motion. We refer to it as the "cycle of every motion" or a number of the frame between three rhythm points. To compare our method with others, we applied two methods: the first method decides the degree from AIC (Akaike's information criterion); and the second method, which we proposed, decides the degree from the cycle of the motion. We introduce the term "decision of suitably degree for a estimate method of dance motion". A good result for an estimate of dance motion was achieved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于节奏的人体运动分析——一种基于自回归模型的舞蹈动作估计方法
我们的目标是再现图像数据库中记录的日本传统舞蹈动作。提出了一种基于自回归模型的舞蹈动作估计方法。在自回归模型的统计运动估计中,度的确定是一个非常重要的问题。为了确定合适的程度,我们定义了“节奏点”或运动开始和结束的时间。我们把它称为“每一个动作的周期”或三个节奏点之间的帧数。为了与其他方法进行比较,我们采用了两种方法:第一种方法是根据AIC(赤池信息准则)来确定程度;第二种方法,我们提出的,从运动的周期来确定度。引入了“舞蹈动作估计方法的适宜度判定”这一术语。对舞蹈动作的估计取得了较好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New ensemble system based on mutual entrainment Growing RBF structures using self-organizing maps Attention expression mechanism for utterance generation Genetic symbiosis algorithm for multiobjective optimization problem Anthropomorphic communications in the emerging relationship between humans and robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1