{"title":"Genetic symbiosis algorithm for multiobjective optimization problem","authors":"Jiangming Mao, K. Hirasawa, Jinlu Hu, J. Murata","doi":"10.1109/ROMAN.2000.892484","DOIUrl":null,"url":null,"abstract":"Evolutionary algorithms are often well-suited for optimization problems. Since the mid-1980's, interest in multiobjective problems has been expanding rapidly. Various evolutionary algorithms have been developed which are capable of searching for multiple solutions concurrently in a single run. In this paper, we proposed a genetic symbiosis algorithm (GSA) for multi-object optimization problems (MOP) based on the symbiotic concept found widely in ecosystem. In the proposed GSA for MOP, a set of symbiotic parameters are introduced to modify the fitness of individuals used for reproduction so as to obtain a variety of Pareto solutions corresponding to user's demands. The symbiotic parameters are trained by minimizing a user defined criterion function. Several numerical simulations are carried out to demonstrate the effectiveness of proposed GSA.","PeriodicalId":337709,"journal":{"name":"Proceedings 9th IEEE International Workshop on Robot and Human Interactive Communication. IEEE RO-MAN 2000 (Cat. No.00TH8499)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 9th IEEE International Workshop on Robot and Human Interactive Communication. IEEE RO-MAN 2000 (Cat. No.00TH8499)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.2000.892484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
Evolutionary algorithms are often well-suited for optimization problems. Since the mid-1980's, interest in multiobjective problems has been expanding rapidly. Various evolutionary algorithms have been developed which are capable of searching for multiple solutions concurrently in a single run. In this paper, we proposed a genetic symbiosis algorithm (GSA) for multi-object optimization problems (MOP) based on the symbiotic concept found widely in ecosystem. In the proposed GSA for MOP, a set of symbiotic parameters are introduced to modify the fitness of individuals used for reproduction so as to obtain a variety of Pareto solutions corresponding to user's demands. The symbiotic parameters are trained by minimizing a user defined criterion function. Several numerical simulations are carried out to demonstrate the effectiveness of proposed GSA.