{"title":"A low voltage low power temperature sensor using a 2nd order delta-sigma modulator","authors":"Filipe Quendera, N. Paulino","doi":"10.1109/DCIS.2015.7388608","DOIUrl":null,"url":null,"abstract":"This paper presents a low power low voltage temperature sensor designed in a 0.13 μm CMOS technology. The circuit consist of a bandgap voltage reference and a second order sigma-delta modulator. The circuit was designed to operate with a minimum power supply of 0.5 V. The voltage reference circuit operates from -50°C to 110°C with a temperature coefficient of 67.15 (ppm/°C) with a maximum power dissipation of 5.9μW. The bandgap circuit combined with the second order ΔΣ modulator dissipates 6.1μW to 11.7μW over a -30°C to 70°C range.","PeriodicalId":191482,"journal":{"name":"2015 Conference on Design of Circuits and Integrated Systems (DCIS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Conference on Design of Circuits and Integrated Systems (DCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCIS.2015.7388608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper presents a low power low voltage temperature sensor designed in a 0.13 μm CMOS technology. The circuit consist of a bandgap voltage reference and a second order sigma-delta modulator. The circuit was designed to operate with a minimum power supply of 0.5 V. The voltage reference circuit operates from -50°C to 110°C with a temperature coefficient of 67.15 (ppm/°C) with a maximum power dissipation of 5.9μW. The bandgap circuit combined with the second order ΔΣ modulator dissipates 6.1μW to 11.7μW over a -30°C to 70°C range.