Phase Retrieval via Wirtinger Flow Algorithm and Its Variants

Jian-wei Liu, Zhi Cao, Jing Liu, Xiong-lin Luo, Wei-min Li, Nobuyasu Ito, Longteng Guo
{"title":"Phase Retrieval via Wirtinger Flow Algorithm and Its Variants","authors":"Jian-wei Liu, Zhi Cao, Jing Liu, Xiong-lin Luo, Wei-min Li, Nobuyasu Ito, Longteng Guo","doi":"10.1109/ICMLC48188.2019.8949170","DOIUrl":null,"url":null,"abstract":"Almost three-quarters of the underling information in the light wave field is embodied in the phase. However, the early optical detectors can only record the intensity or amplitude of the light wave field and cannot directly extract the phase information of the light wave field. Therefore, it is necessary to use the measured amplitude or strength to reconstruct the phase information of the object, this problem is denoted phase retrieval. Phase retrieval is a matter of cardinal significance in signal processing and machine learning. The phase retrieval by convex optimization algorithm is ideal but the computational complexity is high. In 2015, Candès proposed a very effective non-convex optimization algorithm-Wirtinger flow algorithm which used spectral initialization to get a better initial value and then gradient iteration to get a promised recovery effect. Subsequently, in line with the idea, a large number of variants are devised, such as: Wirtinger flow(WF), Truncated Wirtinger Flow (TWF), Truncated Amplitude Flow (TAF), Reshaped Wirtinger Flow (RWF), Incremental Truncated Wirtinger Flow (ITWF), Incremental Reshaped Wirtinger Flow (IRWF), Robust Wirtinger Flow (Robust-WF), Sparse Wirtinger Flow (SWF), Median-TWF, Median-RWF, Generalized Wirtinger Flow (GWF), Accelerated Wirtinger Flow (AWF), Thresholded Wirtinger Flow Revisited (THWFR), Thresholded Wirtinger Flow (THWF), Reweighted Wirtinger Flow (REWF), Wirtinger Flow Method With Optimal Stepsize (WFOS), Stochastic Truncated Wirtinger Flow Algorithm (STWF), Stochastic Truncated Amplitude Flow (STAF), Reweighted Amplitude Flow (RAF), Compressive Reweighted Amplitude Flow (CRAF), SPARse Truncated Amplitude flow (SPARTA) and Sparse Wirtinger Flow Algorithm with Optimal Stepsize (SWFOS), etc. This paper analyzes and summarizes these algorithms according to their characteristics such as: initialization method, step size, iteration times, sample complexity, computational complexity, etc., so that readers can intuitively and clearly see the characteristics of each algorithm. Finally, we provide the website of the source code of some algorithms, facilitate to access and use it for readers.","PeriodicalId":221349,"journal":{"name":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC48188.2019.8949170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Almost three-quarters of the underling information in the light wave field is embodied in the phase. However, the early optical detectors can only record the intensity or amplitude of the light wave field and cannot directly extract the phase information of the light wave field. Therefore, it is necessary to use the measured amplitude or strength to reconstruct the phase information of the object, this problem is denoted phase retrieval. Phase retrieval is a matter of cardinal significance in signal processing and machine learning. The phase retrieval by convex optimization algorithm is ideal but the computational complexity is high. In 2015, Candès proposed a very effective non-convex optimization algorithm-Wirtinger flow algorithm which used spectral initialization to get a better initial value and then gradient iteration to get a promised recovery effect. Subsequently, in line with the idea, a large number of variants are devised, such as: Wirtinger flow(WF), Truncated Wirtinger Flow (TWF), Truncated Amplitude Flow (TAF), Reshaped Wirtinger Flow (RWF), Incremental Truncated Wirtinger Flow (ITWF), Incremental Reshaped Wirtinger Flow (IRWF), Robust Wirtinger Flow (Robust-WF), Sparse Wirtinger Flow (SWF), Median-TWF, Median-RWF, Generalized Wirtinger Flow (GWF), Accelerated Wirtinger Flow (AWF), Thresholded Wirtinger Flow Revisited (THWFR), Thresholded Wirtinger Flow (THWF), Reweighted Wirtinger Flow (REWF), Wirtinger Flow Method With Optimal Stepsize (WFOS), Stochastic Truncated Wirtinger Flow Algorithm (STWF), Stochastic Truncated Amplitude Flow (STAF), Reweighted Amplitude Flow (RAF), Compressive Reweighted Amplitude Flow (CRAF), SPARse Truncated Amplitude flow (SPARTA) and Sparse Wirtinger Flow Algorithm with Optimal Stepsize (SWFOS), etc. This paper analyzes and summarizes these algorithms according to their characteristics such as: initialization method, step size, iteration times, sample complexity, computational complexity, etc., so that readers can intuitively and clearly see the characteristics of each algorithm. Finally, we provide the website of the source code of some algorithms, facilitate to access and use it for readers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Wirtinger流算法及其变体的相位检索
光波场中几乎四分之三的底层信息体现在相位中。然而,早期的光学探测器只能记录光波场的强度或振幅,不能直接提取光波场的相位信息。因此,需要利用测量到的振幅或强度来重建目标的相位信息,这一问题称为相位恢复。相位检索在信号处理和机器学习中具有重要的意义。采用凸优化算法进行相位检索是理想的,但计算量较大。2015年,cand提出了一种非常有效的非凸优化算法——wirtinger flow算法,该算法通过谱初始化得到较好的初值,再通过梯度迭代得到较好的恢复效果。随后,根据这个想法,设计了大量的变体,例如:维丁格流(WF)、截断维丁格流(TWF)、截断幅值流(TAF)、重塑维丁格流(RWF)、递增截断维丁格流(ITWF)、递增重塑维丁格流(IRWF)、稳健维丁格流(Robust-WF)、稀疏维丁格流(SWF)、中位数维丁格流、中位数维丁格流、广义维丁格流(GWF)、加速维丁格流(AWF)、重新访问阈值维丁格流(THWFR)、阈值维丁格流(THWF)、重加权维丁格流(REWF)、最优步长Wirtinger流方法(WFOS)、随机截断Wirtinger流算法(STWF)、随机截断幅值流(STAF)、重加权幅值流(RAF)、压缩重加权幅值流(CRAF)、稀疏截断幅值流(SPARTA)和最优步长稀疏Wirtinger流算法(SWFOS)等。本文根据这些算法的特点,如:初始化方法、步长、迭代次数、样本复杂度、计算复杂度等进行分析总结,使读者能够直观、清晰地看到每种算法的特点。最后,我们提供了部分算法的源代码网站,方便读者访问和使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Empirical Study on the Classification of Chinese News Articles by Machine Learning and Deep Learning Techniques Posture Estimation Method Using Cushion Type Seat Pressure Sensor Advanced Convolutional Neural Network With Feedforward Inhibition Utilization of the Infrared Image Capturing Combustion State for Estimating the Steam Flow Aming to Stabilize Garbage Power Generation Domain Adaption for Facial Expression Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1