Consistent and robust 4D whole-brain segmentation: Application to traumatic brain injury

C. Ledig, W. Shi, A. Makropoulos, J. Koikkalainen, R. Heckemann, A. Hammers, J. Lötjönen, O. Tenovuo, D. Rueckert
{"title":"Consistent and robust 4D whole-brain segmentation: Application to traumatic brain injury","authors":"C. Ledig, W. Shi, A. Makropoulos, J. Koikkalainen, R. Heckemann, A. Hammers, J. Lötjönen, O. Tenovuo, D. Rueckert","doi":"10.1109/ISBI.2014.6867960","DOIUrl":null,"url":null,"abstract":"We propose a consistent approach to automatically segmenting longitudinal magnetic resonance scans of pathological brains. Using symmetric intra-subject registration, we align corresponding scans. In an expectation-maximization framework we exploit the availability of probabilistic segmentation estimates to perform a symmetric intensity normalisation. We introduce a novel technique to perform symmetric differential bias correction for images in presence of pathologies. To achieve a consistent multi-time-point segmentation, we propose a patch-based coupling term using a spatially and temporally varying Markov random field. We demonstrate the superior consistency of our method by segmenting repeat scans into 134 regions. Furthermore, the approach has been applied to segment baseline and six month follow-up scans from 56 patients who have sustained traumatic brain injury (TBI). We find significant correlations between regional atrophy rates and clinical outcome: Patients with poor outcome showed a much higher thalamic atrophy rate (4.9 ± 3.4%) than patients with favourable outcome (0.6 ± 1.9%).","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose a consistent approach to automatically segmenting longitudinal magnetic resonance scans of pathological brains. Using symmetric intra-subject registration, we align corresponding scans. In an expectation-maximization framework we exploit the availability of probabilistic segmentation estimates to perform a symmetric intensity normalisation. We introduce a novel technique to perform symmetric differential bias correction for images in presence of pathologies. To achieve a consistent multi-time-point segmentation, we propose a patch-based coupling term using a spatially and temporally varying Markov random field. We demonstrate the superior consistency of our method by segmenting repeat scans into 134 regions. Furthermore, the approach has been applied to segment baseline and six month follow-up scans from 56 patients who have sustained traumatic brain injury (TBI). We find significant correlations between regional atrophy rates and clinical outcome: Patients with poor outcome showed a much higher thalamic atrophy rate (4.9 ± 3.4%) than patients with favourable outcome (0.6 ± 1.9%).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一致稳健的4D全脑分割:在颅脑外伤中的应用
我们提出了一种一致的方法来自动分割病理大脑的纵向磁共振扫描。使用对称的受试者内注册,我们对齐相应的扫描。在期望最大化框架中,我们利用概率分割估计的可用性来执行对称强度归一化。我们介绍了一种新的技术来执行对称微分偏差校正的图像在存在的病理。为了实现一致的多时间点分割,我们提出了一个基于补丁的耦合项,使用空间和时间变化的马尔可夫随机场。我们通过将重复扫描分割为134个区域来证明我们方法的优越一致性。此外,该方法已应用于56例持续性创伤性脑损伤(TBI)患者的分段基线和6个月随访扫描。我们发现区域萎缩率与临床结果之间存在显著相关性:预后较差的患者的丘脑萎缩率(4.9±3.4%)远高于预后良好的患者(0.6±1.9%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MRI based attenuation correction for PET/MRI via MRF segmentation and sparse regression estimated CT DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks Functional parcellation of the hippocampus by clustering resting state fMRI signals Detecting cell assembly interaction patterns via Bayesian based change-point detection and graph inference model Topological texture-based method for mass detection in breast ultrasound image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1