Inference in Social Networks from Ultra-Sparse Distance Measurements via Pretrained Hadamard Autoencoders

G. Mahindre, Rasika Karkare, R. Paffenroth, A. Jayasumana
{"title":"Inference in Social Networks from Ultra-Sparse Distance Measurements via Pretrained Hadamard Autoencoders","authors":"G. Mahindre, Rasika Karkare, R. Paffenroth, A. Jayasumana","doi":"10.1109/LCN48667.2020.9314769","DOIUrl":null,"url":null,"abstract":"Analysis of large-scale networks is hampered by limited data as complete network measurements are expensive or impossible to collect. We present an autoencoder based technique paired with pretraining, to predict missing topology information in ultra-sparsely sampled social networks. Randomly generated variations of Barabási-Albert and power law cluster graphs are used to pretrain a Hadamard Autoencoder. Pretrained neural network is then used to infer distances in social networks where only a very small fraction of intra-node distances are available. Model is evaluated on variations of Barabási-Albert and Powerlaw cluster graphs as well as on a real-world Facebook network. Results are compared with a deterministic Low-rank Matrix Completion (LMC) method as well as an autoencoder trained on partially observed data from the test-network. Results show that pretrained autoencoder far outperforms LMC when the number of distance samples available is less than 1%, while being competitive for higher fraction of samples.","PeriodicalId":245782,"journal":{"name":"2020 IEEE 45th Conference on Local Computer Networks (LCN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 45th Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN48667.2020.9314769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Analysis of large-scale networks is hampered by limited data as complete network measurements are expensive or impossible to collect. We present an autoencoder based technique paired with pretraining, to predict missing topology information in ultra-sparsely sampled social networks. Randomly generated variations of Barabási-Albert and power law cluster graphs are used to pretrain a Hadamard Autoencoder. Pretrained neural network is then used to infer distances in social networks where only a very small fraction of intra-node distances are available. Model is evaluated on variations of Barabási-Albert and Powerlaw cluster graphs as well as on a real-world Facebook network. Results are compared with a deterministic Low-rank Matrix Completion (LMC) method as well as an autoencoder trained on partially observed data from the test-network. Results show that pretrained autoencoder far outperforms LMC when the number of distance samples available is less than 1%, while being competitive for higher fraction of samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于预训练Hadamard自编码器的超稀疏距离测量在社交网络中的推断
对大规模网络的分析受到有限数据的阻碍,因为完整的网络测量是昂贵的或不可能收集的。我们提出了一种基于自编码器的技术与预训练相结合,以预测超稀疏抽样社会网络中缺失的拓扑信息。随机生成的Barabási-Albert和幂律聚类图的变化用于预训练Hadamard自编码器。然后使用预训练的神经网络来推断只有很小一部分节点内距离可用的社交网络中的距离。模型在Barabási-Albert和Powerlaw聚类图的变化以及真实的Facebook网络上进行了评估。结果与确定性低秩矩阵补全(LMC)方法以及基于测试网络部分观测数据训练的自编码器进行了比较。结果表明,当可用距离样本数小于1%时,预训练自编码器的性能远远优于LMC,而对于更高比例的样本,预训练自编码器具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Leveraging MEC in a 5G System for Enhanced Back Situation Awareness L3SFA: Load Shifting Strategy for Spreading Factor Allocation in LoRaWAN Systems PLEDGE: An IoT-oriented Proof-of-Honesty based Blockchain Consensus Protocol Don’t Stop at the Top: Using Certificate Transparency Logs to Extend Domain Lists for Web Security Studies SETA: Scalable Encrypted Traffic Analytics in Multi-Gbps Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1