Digital RF architectures for wireless transceivers (invited)

R. Staszewski
{"title":"Digital RF architectures for wireless transceivers (invited)","authors":"R. Staszewski","doi":"10.1109/ECCTD.2011.6043379","DOIUrl":null,"url":null,"abstract":"One of the most important developments in the wireless industry within the last decade was the digitization of RF circuitry. This was in response to the incredible advancements of the mainstream CMOS technology in both processing speed and circuit density, as well as the relentless push to reduce total solution costs through integration of RF, analog and digital circuitry. Since the digital baseband part of a wireless communication channel has been traditionally implemented in the most advanced CMOS technology available at a given time for mass production, the need for single-chip CMOS integration has forced permanent changes to the way RF circuits are fundamentally designed. In this low-voltage nanometer-scale CMOS environment, the high-performance RF circuits must exploit the time-domain design paradigm and heavily rely on digital assistance. This paper revisits the digitization journey of RF circuits.","PeriodicalId":126960,"journal":{"name":"2011 20th European Conference on Circuit Theory and Design (ECCTD)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 20th European Conference on Circuit Theory and Design (ECCTD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCTD.2011.6043379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

One of the most important developments in the wireless industry within the last decade was the digitization of RF circuitry. This was in response to the incredible advancements of the mainstream CMOS technology in both processing speed and circuit density, as well as the relentless push to reduce total solution costs through integration of RF, analog and digital circuitry. Since the digital baseband part of a wireless communication channel has been traditionally implemented in the most advanced CMOS technology available at a given time for mass production, the need for single-chip CMOS integration has forced permanent changes to the way RF circuits are fundamentally designed. In this low-voltage nanometer-scale CMOS environment, the high-performance RF circuits must exploit the time-domain design paradigm and heavily rely on digital assistance. This paper revisits the digitization journey of RF circuits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无线收发器的数字射频架构(特邀)
在过去十年中,无线行业最重要的发展之一是射频电路的数字化。这是为了响应主流CMOS技术在处理速度和电路密度方面的惊人进步,以及通过RF,模拟和数字电路集成来降低总解决方案成本的不懈努力。由于无线通信信道的数字基带部分传统上是用最先进的CMOS技术实现的,因此对单芯片CMOS集成的需求迫使射频电路的基本设计方式发生了永久性的变化。在这种低电压纳米级CMOS环境下,高性能射频电路必须利用时域设计范式,并严重依赖数字辅助。本文回顾了射频电路的数字化历程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decade bandwidth single and cascaded travelling wave medium power amplifiers using sige hbts Hilbert transform by divide-and-conquer piecewise linear approximation Analysis and design of an array of two differential oscillators coupled through a resistive network Impact of NMOS/PMOS imbalance in Ultra-Low Voltage CMOS standard cells Utilization of distortion contribution analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1