Impact of localization errors on automated vehicle control strategies

R. Patel, Jérôme Härri, C. Bonnet
{"title":"Impact of localization errors on automated vehicle control strategies","authors":"R. Patel, Jérôme Härri, C. Bonnet","doi":"10.1109/VNC.2017.8275649","DOIUrl":null,"url":null,"abstract":"Coordinated vehicle control strategies aim at optimizing driving dynamics to increase traffic flow without impacting safety. These control strategies are based on the knowledge of the vehicles' state information like position and velocity obtained through Vehicle-to-everything (V2X) communications. Literature on control strategies yet assumes perfect positions, whereas position errors are in fact present and non negligible (e.g. GPS). As a consequence, these localization errors impact the control strategies by introducing uncertainty, which must be accounted for to minimize the probability of accidents. This paper qualifies and quantifies such uncertainty and proposes strategies to reduce it in a collision avoidance scenario. We notably relate these strategies to their impacts on traffic flow. More specifically, we model coordinated automated vehicles as a Model Predictive Control (MPC), integrate localization errors and evaluate its impact of the output to avoid accident. We then propose possibilities to mitigate accident-prone controls and quantify them on traffic flow. Our study illustrates that localization errors impact traffic flow by forcing future automated vehicles to increase gaps or reduce speed.","PeriodicalId":101592,"journal":{"name":"2017 IEEE Vehicular Networking Conference (VNC)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Vehicular Networking Conference (VNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VNC.2017.8275649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Coordinated vehicle control strategies aim at optimizing driving dynamics to increase traffic flow without impacting safety. These control strategies are based on the knowledge of the vehicles' state information like position and velocity obtained through Vehicle-to-everything (V2X) communications. Literature on control strategies yet assumes perfect positions, whereas position errors are in fact present and non negligible (e.g. GPS). As a consequence, these localization errors impact the control strategies by introducing uncertainty, which must be accounted for to minimize the probability of accidents. This paper qualifies and quantifies such uncertainty and proposes strategies to reduce it in a collision avoidance scenario. We notably relate these strategies to their impacts on traffic flow. More specifically, we model coordinated automated vehicles as a Model Predictive Control (MPC), integrate localization errors and evaluate its impact of the output to avoid accident. We then propose possibilities to mitigate accident-prone controls and quantify them on traffic flow. Our study illustrates that localization errors impact traffic flow by forcing future automated vehicles to increase gaps or reduce speed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
定位误差对自动车辆控制策略的影响
车辆协调控制策略旨在优化驾驶动态,在不影响安全的前提下增加交通流量。这些控制策略基于通过V2X通信获得的车辆状态信息,如位置和速度。关于控制策略的文献仍然假设了完美的位置,而位置误差实际上是存在的并且不可忽略(例如GPS)。因此,这些定位误差通过引入不确定性来影响控制策略,必须考虑不确定性以最小化事故的概率。本文对这种不确定性进行了定性和量化,并提出了在避碰场景中减少不确定性的策略。我们特别将这些策略与它们对交通流量的影响联系起来。更具体地说,我们将协调自动驾驶车辆建模为模型预测控制(MPC),集成定位误差并评估其对输出的影响,以避免事故的发生。然后,我们提出了减轻事故易发控制的可能性,并对交通流量进行量化。我们的研究表明,定位错误会迫使未来的自动驾驶汽车增加间距或降低速度,从而影响交通流量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of WPT communication system based on SAE J2847 standard for electric vehicle Study of the impact of pseudonym change mechanisms on vehicular safety Poster: Characterizing driving behaviors through a car simulation platform Demo: MAMBA: A platform for personalised multimodal trip planning Effects of colluding Sybil nodes in message falsification attacks for vehicular platooning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1