{"title":"Structural bionic lightweight design for the stiffened plate of base structure","authors":"Nuo Bao, Jianming Ma, Xingqi Zhang, Zhenghu Zhong","doi":"10.1109/ICMAE.2016.7549543","DOIUrl":null,"url":null,"abstract":"A lightweight bionic design method is proposed to reinforce the structure. The characteristics of leaf vein and honeycomb are investigated to optimize the shape and distribution of the stiffened plate. The structural bionic design for the stiffened plate of base structure is carried out based on biological structure characteristics. Then, a comparison of static performance between initial and bionic structures is conducted to verify the proposed approach by employing finite element analysis. The results show that the mass of the bionic types is reduced by 12.46% and 8.02%, the maximum deformation is reduced by 5.45% and 3.58%, respectively. And thus the validity and applicability of this method is verified.","PeriodicalId":371629,"journal":{"name":"2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMAE.2016.7549543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A lightweight bionic design method is proposed to reinforce the structure. The characteristics of leaf vein and honeycomb are investigated to optimize the shape and distribution of the stiffened plate. The structural bionic design for the stiffened plate of base structure is carried out based on biological structure characteristics. Then, a comparison of static performance between initial and bionic structures is conducted to verify the proposed approach by employing finite element analysis. The results show that the mass of the bionic types is reduced by 12.46% and 8.02%, the maximum deformation is reduced by 5.45% and 3.58%, respectively. And thus the validity and applicability of this method is verified.